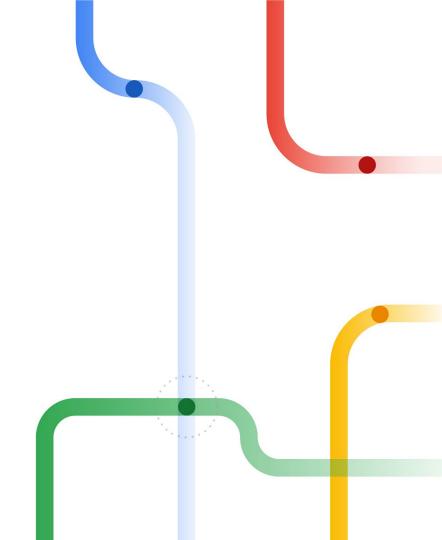
A tale of two encoders for neural retrieval

Aditya Krishna Menon Sep 5th, 2024

Google Research



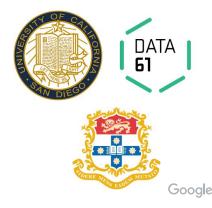
About me

Research Scientist at Google NYC

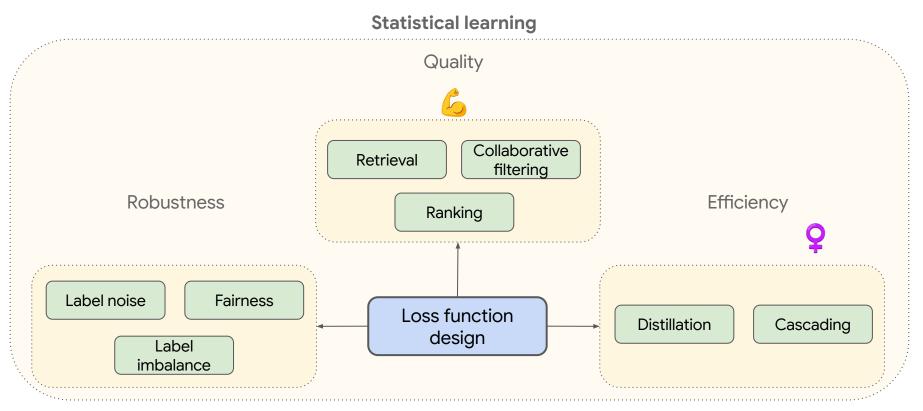
Working on machine learning algorithm design and analysis

Past lives:

- University of Sydney
- UC San Diego
- NICTA / CSIRO Data61 / Australian National University



About my work



About this talk

Summary of (some of) our team's (+ collaborators') work on neural retrieval

Ankit Singh Rawat

Andreas Veit

Felix Yu

Himanshu Jain

Manzil Zaheer

Rama Pasumarthi

Rob Fergus

Sadeep Jayasumana

Sanjiv Kumar

Sashank Reddi

Seungyeon Kim

Veeru Sadhanala

Wittawat

Jitkrittum

4

Ziwei Ji

Agenda

- ^{o1} A (neural) retrieval primer
- ⁰² Limits of dual encoders
- ^{o3} Unified cross & dual encoders
- ⁰⁴ Hybrid cross & dual encoders
- ^{o5} Conclusion & future work

Google Research

Information retrieval

• Given a query, and an item corpus, find the *k* most relevant items

Retrieval phase

• Typically, we first retrieve a set of candidate items

Re-ranking phase

• We then re-rank these items to obtain the final results

Re-ranking phase

• We then re-rank these items to obtain the final results

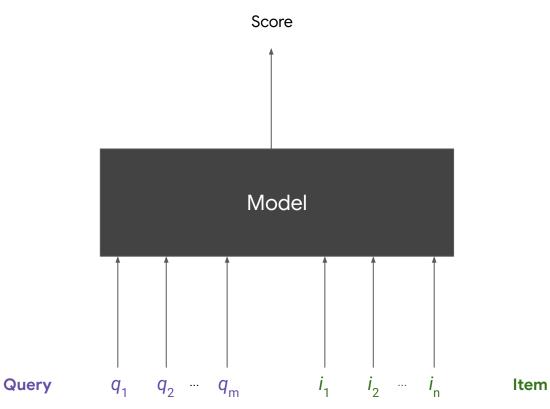


Re-ranking phase

• We then re-rank these items to obtain the final results

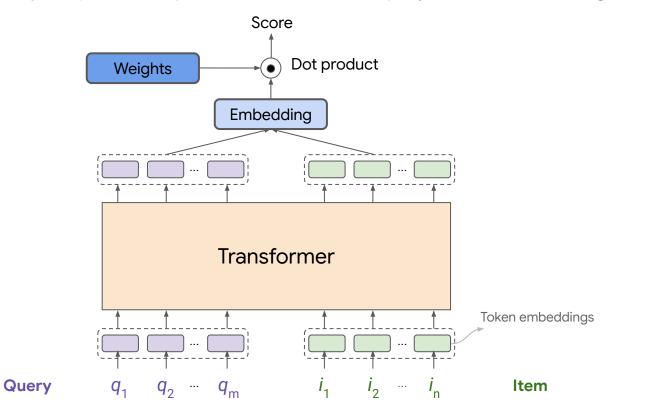
Encoder-based models

• In both phases, we need to score (Query, Item) affinity



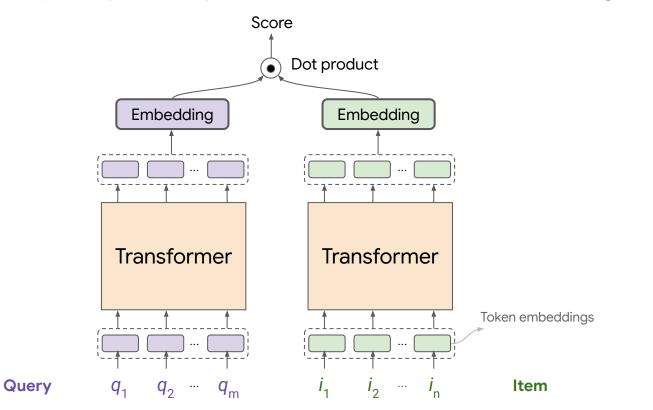
Cross-encoders

• Cross-encoders jointly embed queries and items, and project the embedding



Dual-encoders

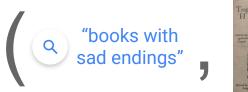
• Dual-encoders separately embed queries and items, and measure embedding similarity

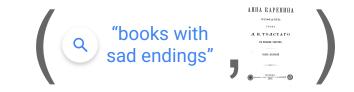


Encoder training

- Each query may have one or more associated positive items
 - Natively, a (featurised) multi-label learning problem

- Can create a set of multi-class labels for each positive
 - Now amenable to, e.g., softmax cross-entropy
 - Key challenge becomes suitable negative mining





Cross- versus dual-encoders

Dual-encoders are highly efficient for retrieval; cross-encoders inapplicable!

Dual-encoders tend to underperform for re-ranking

	MSMARCO re-rank		TREC DL19 re-rank		NQ re-rank	
Model	MRR	nDCG	MRR	nDCG	MRR	nDCG
Cross-attention BERT (12-layer)	0.370	0.430	0.829	0.749	0.746	0.673
Dual-encoder BERT (6-layer)	0.310	0.360	0.834	0.677	0.676	0.601

Maintain separate retrieval and re-ranking models

Passage Re-ranking with BERT. Nogueira and Cho. arXiV 2019. Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation. Hofstätter et al. arXiV 2020.

Cross-versus dual-encoders

Dual-encoders are highly efficient for retrieval; cross-encoders inapplicable!

Dual-encoders tend to underperform for re-ranking

		BAA		nk	NQ r	e-rank
Model	ls there i	more to	the story	2	MRR	nDCG
Cross-attention BERT (12-			the story	•	0.746	0.673
Dual-encoder BERT (6-layer)	0.310	0.360	0.834	0.677	0.676	0.601

Maintain separate retrieval and re-ranking models

Passage Re-ranking with BERT. Nogueira and Cho. arXiV 2019. Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation. Hofstätter et al. arXiV 2020.

Agenda

- ^{o1} A (neural) retrieval primer
- ⁰² Limits of dual encoders
- ⁰³ Unified cross & dual encoders
- ⁰⁴ Hybrid cross & dual encoders
- ^{o5} Conclusion & future work

Google Research

Cross-versus dual-encoders

Dual-encoders tend to underperform for re-ranking

	MSMARCO re-rank		TREC DL19 re-rank		NQ re-rank	
Model	MRR	nDCG	MRR	nDCG	MRR	nDCG
Cross-attention BERT (12-layer)	0.370	0.430	0.829	0.749	0.746	0.673
Dual-encoder BERT (6-layer)	0.310	0.360	0.834	0.677	0.676	0.601

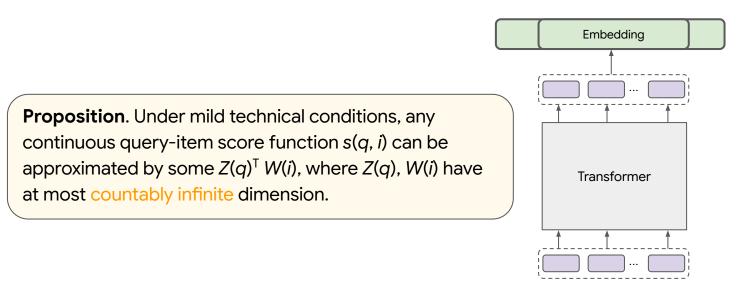
Why does this happen?

...

Inherent capacity limit? Limitations of training procedure?

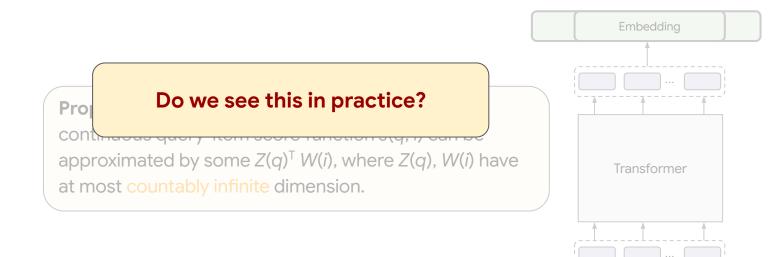
Capacity of dual-encoders: theory

• Can dual-encoders fit any (reasonable) relevance function?



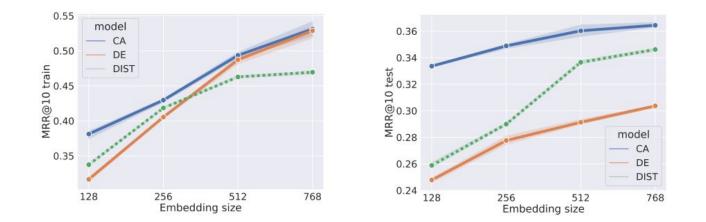
Capacity of dual-encoders: theory

• Can dual-encoders fit any (reasonable) relevance function?



Capacity of dual-encoders: practice

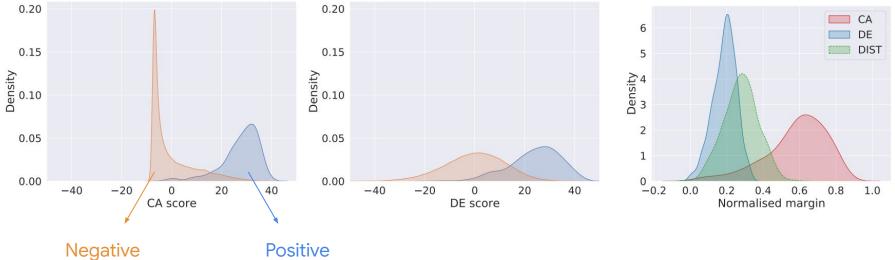
• With large embedding size, dual-encoders work well on training set!



BERT-based encoders on MSMARCO

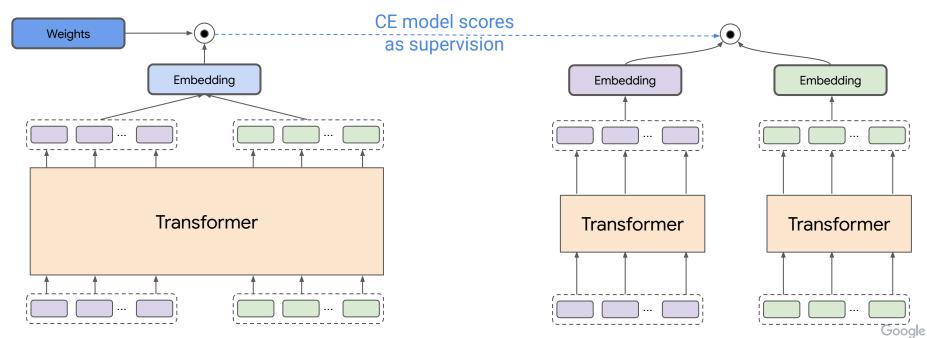
Why is there a generalisation gap?

- Dual-encoders tend to yield poorer margins
 - i.e., poorer gaps between score on positive and negative items



How can we mitigate the generalisation gap?

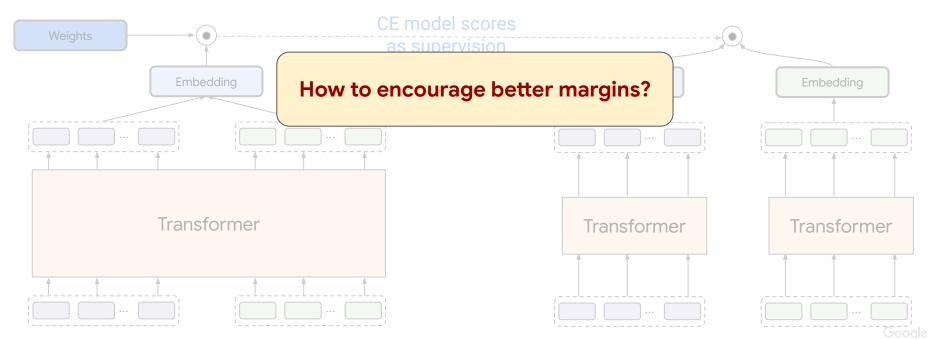
• Distill predictions from a cross-encoder "teacher" to dual-encoder "student"



Distilling knowledge from reader to retriever for question answering. Izacard and Grave. arXiV 2020.

How can we mitigate the generalisation gap?

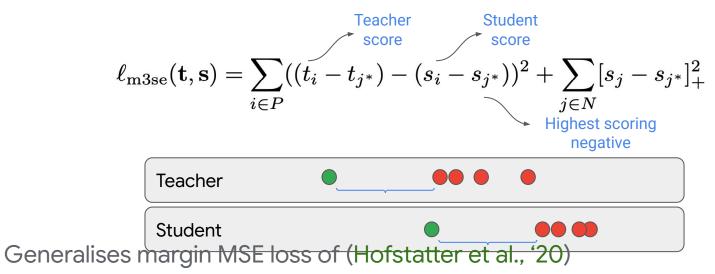
• Distill predictions from a cross-encoder "teacher" to dual-encoder "student"



Distilling knowledge from reader to retriever for question answering. Izacard and Grave. arXiV 2020.

Distillation via multi-margin MSE (M³SE)

• Encourage matching teacher margin on positives *P*:



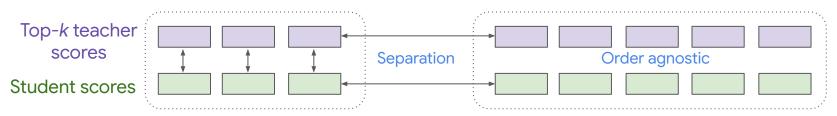
• For a single positive and negative, limiting case of softmax cross-entropy

Distillation via ranking matching

- More generally, we may seek to match teacher's ranking over top-k items
- Several versions of RankDistil objective possible:

$$\ell_{\text{RANKDISTIL}}(t, s, P, N) = \Psi(t, s, P) + \sum_{i \in N} \varphi(-s_i),$$

$$\ell_{\text{RANKDISTIL}}(t, s, P, N) = \Psi(t, s, P) + \sum_{i \in N} \sum_{j \in P} \varphi(s_j - s_i)$$



RankDistil: knowledge distillation for ranking. Reddi et al. AISTATS 2021.

Empirical results for re-ranking

• Distillation can help mitigate the generalisation gap!

	MSMARCO re-rank		TREC DL19 re-rank		NQ re-rank		
Model	MRR	nDCG	MRR	nDCG	MRR	nDCG	
One-hot models							
BM25 (Robertson & Zaragoza, 2009)	0.194^{\dagger}	0.241 [†]	0.689 [†]	0.501 [†]	_	_	
ANCE (Xiong et al., 2021)	_				0.677^{\dagger}	_	_
Cross-attention BERT (12-layer)	0.370	0.430	0.829	0.749	0.746	0.673	
Dual-encoder BERT (6-layer)	0.310	0.360	0.834	0.677	0.676	0.601	
Distilled dual-encoders							
MSE (Hofstätter et al., 2020a)	0.289	0.343	0.781	0.693	0.659	0.591	
Margin MSE (Hofstätter et al., 2020a)	0.334	0.392	0.867^{\diamondsuit}	0.718	0.673	0.594	
RankDistil-B (Reddi et al., 2021)	0.249	0.301	0.852	0.708	0.649	0.561	
Softmax CE (Equation 1)	0.346	0.405	0.846	0.726♦	0.682	0.607	
M^3SE (Equation 4)	0.349	0.406	0.852	0.714	0.699	0.625	

Cross-versus dual-encoders

Dual-encoders tend to underperform for re-ranking

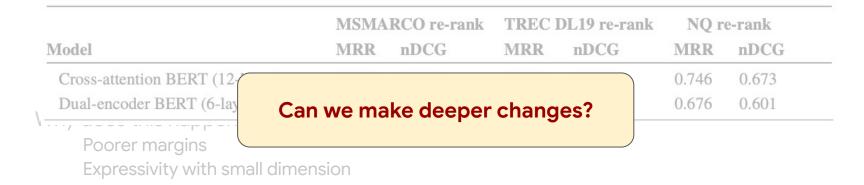
	MSMARCO re-rank		TREC DL19 re-rank		NQ re-rank	
Model	MRR	nDCG	MRR	nDCG	MRR	nDCG
Cross-attention BERT (12-layer)	0.370	0.430	0.829	0.749	0.746	0.673
Dual-encoder BERT (6-layer)	0.310	0.360	0.834	0.677	0.676	0.601

Poorer margins Expressivity with small dimension

What can we do about it? Distillation

Cross-versus dual-encoders

Dual-encoders tend to underperform for re-ranking



What can we do about it?

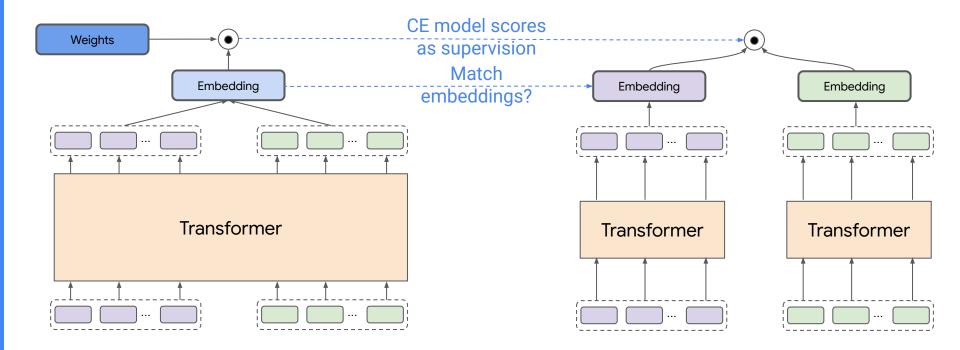
Distillation

Agenda

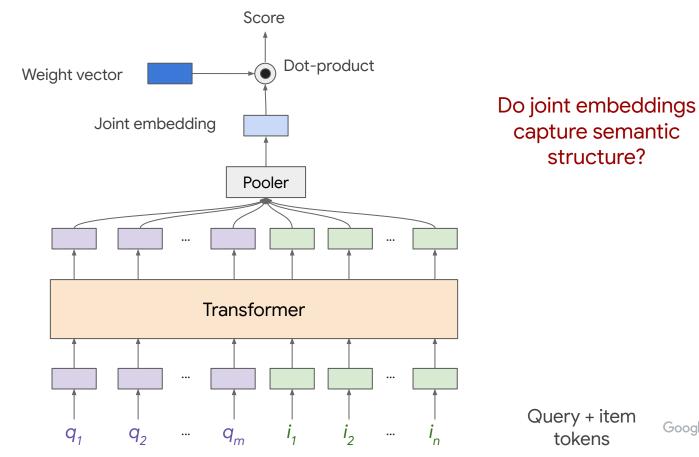
- ^{o1} A (neural) retrieval primer
- ⁰² Limits of dual encoders
- ⁰³ Unified cross & dual encoders
- ⁰⁴ Hybrid cross & dual encoders
- ^{o5} Conclusion & future work

Google Research

Cross- to dual-encoder distillation

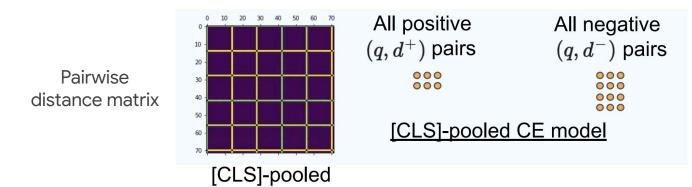


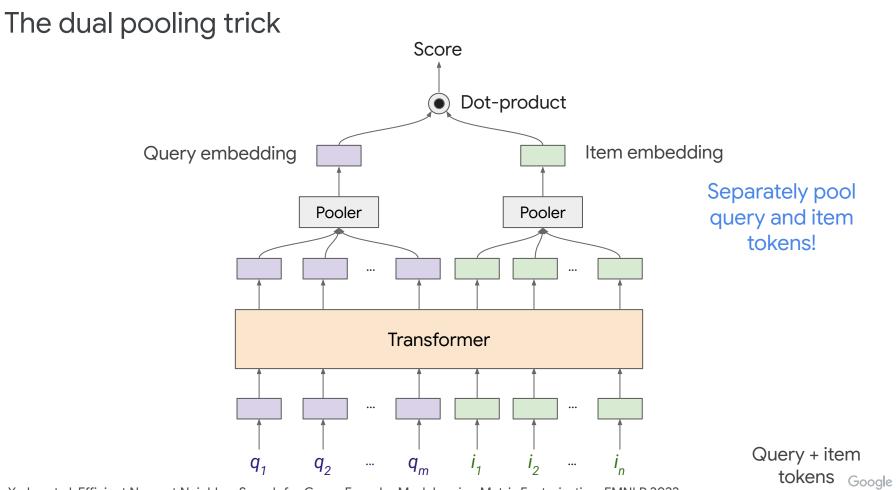
Cross-encoder embeddings: a closer look



The perils of (naïve) pooling

- Cross-encoder training seeks to align embeddings of:
 - Positive pairs with some (learned) weight vector w
 - Negative pairs with some (learned) weight vector -w
- Joint embeddings tend to not capture semantic structure!
 - \circ ~ No explicit coupling amongst embeddings within a group

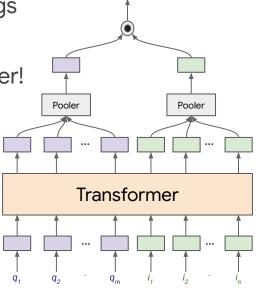


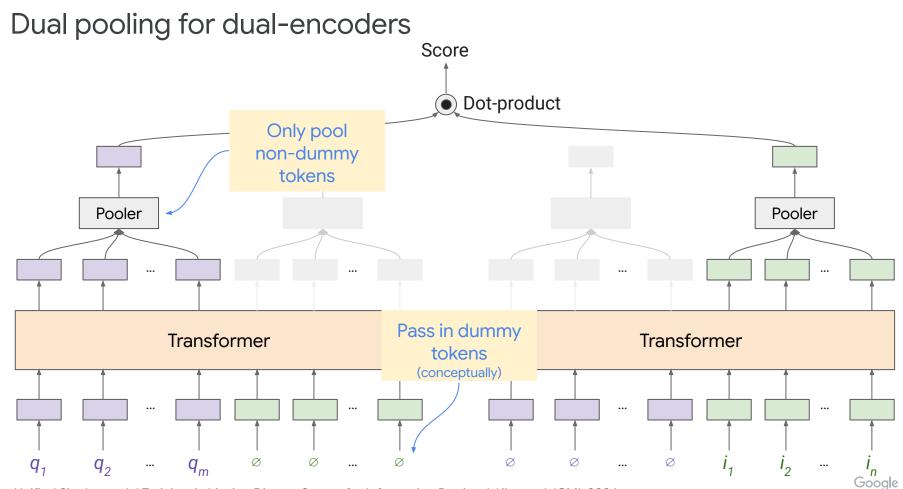


Yadav et al. Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix Factorization. EMNLP 2022.

Dual pooling = dual encoder?

- Dual pooling produces separate query and item embeddings
- However, these involve joint processing through the encoder!
 - Not suitable for use as a dual encoder!
 - \circ Cannot use this for efficient query \rightarrow item search
- Need to separately process queries and items...

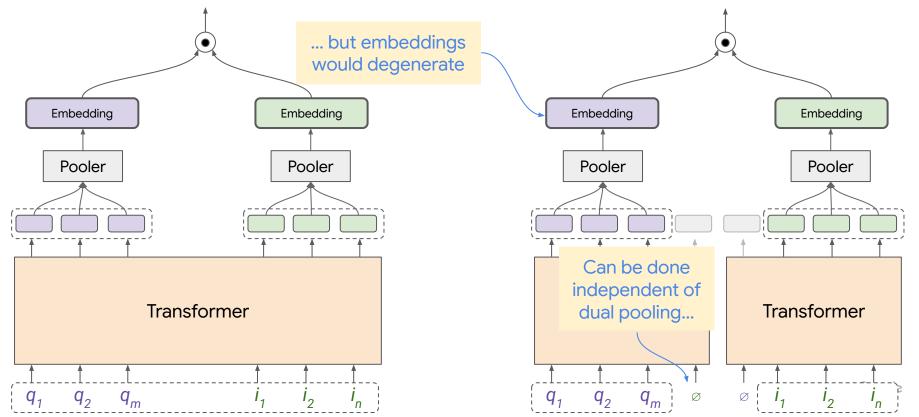




Unified Single-model Training Achieving Diverse Scores for Information Retrieval. Kim et al. ICML 2024.

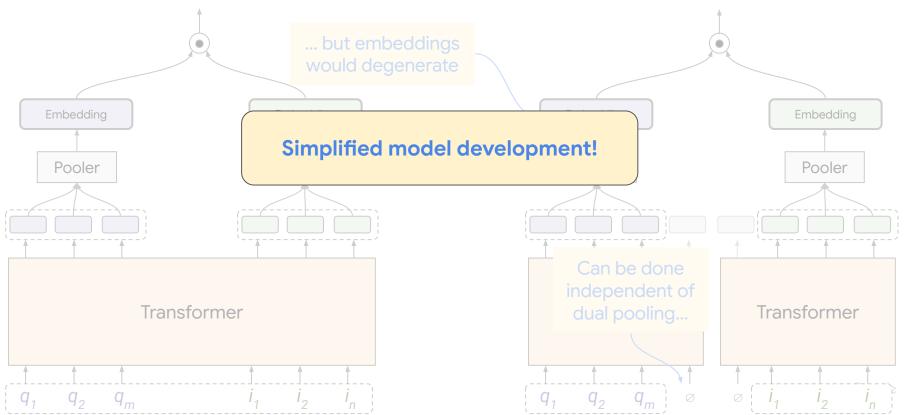
USTAD: unified cross- and dual-encoder

• Re-use same Transformer for both cross- and dual-encoder!

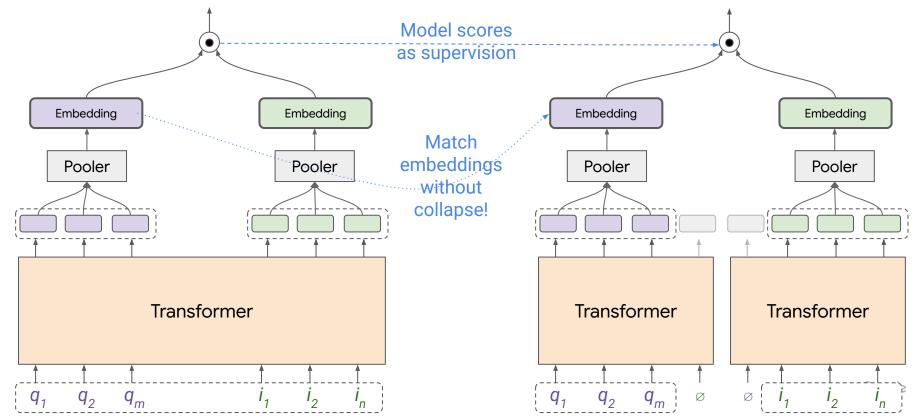


USTAD: unified cross- and dual-encoder

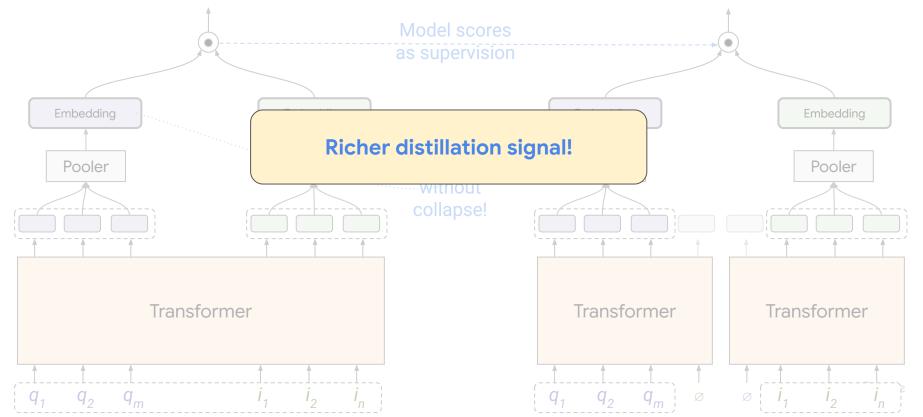
• Re-use same Transformer for both cross- and dual-encoder!



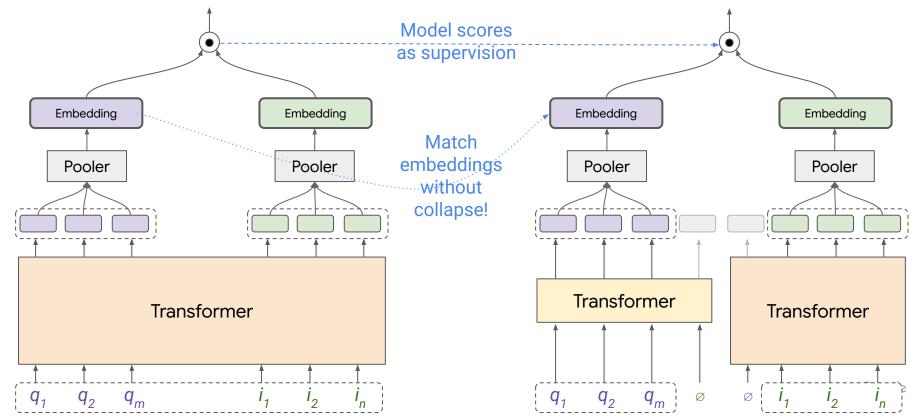
USTAD cross-encoder distillation



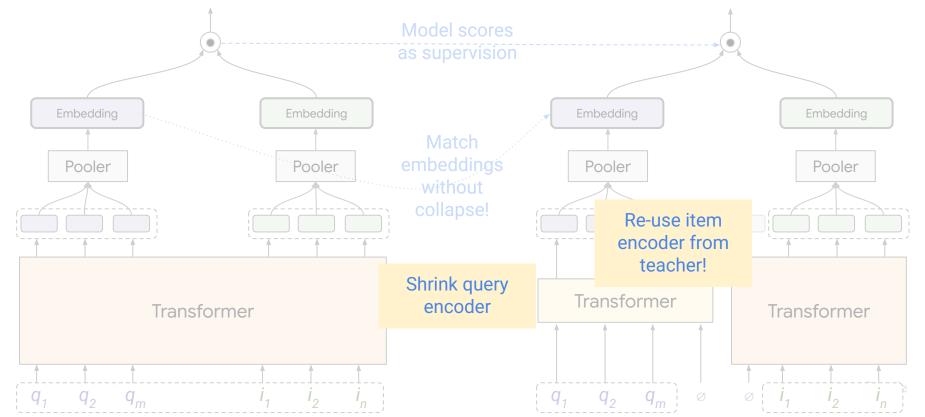
USTAD cross-encoder distillation



USTAD cross-encoder distillation + item tower re-use



USTAD cross-encoder distillation + item tower re-use



$\mathsf{USTAD} \to \mathsf{smaller} \ \mathsf{dual}\text{-}\mathsf{encoder}$

• Embedding matching from USTAD teacher is powerful:

Dataset		N	atural Qu	estions (D	ev)		MSMARCO (Dev)				
Method		67.5M			11.3M		67.5M		11.3M		
Method	R@1	R@5	R@10	R@1	R@5	R@10	MRR@10	nDCG@10	MRR@10	nDCG@10	
Train student directly	39.5	66.4	74.7	34.1	59.8	68.6	27.0	32.2	23.0	29.7	

Table 2. Reranking performance of various student DE models on NQ and MSMARCO dev set, including symmetric DE model (67.5M or 11.3M transformer as both encoders) and asymmetric DE student model (67.5M or 11.3M transformer as query encoder and document embeddings inherited from USTAD teacher). The USTAD teacher achieves R@1 = 47.4, R@5 = 77.2, R@10 = 83.7, on NQ and MRR@10 = 40.0, nDCG@10 = 45.8 on MSMARCO.

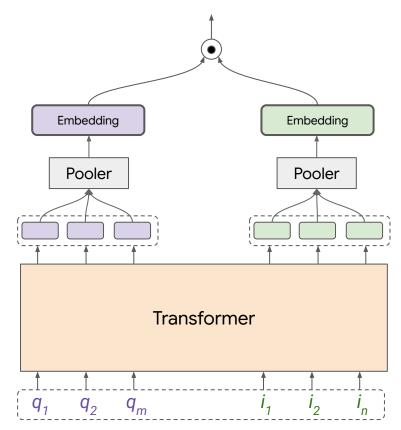
Generic dual-encoder \rightarrow smaller dual-encoder

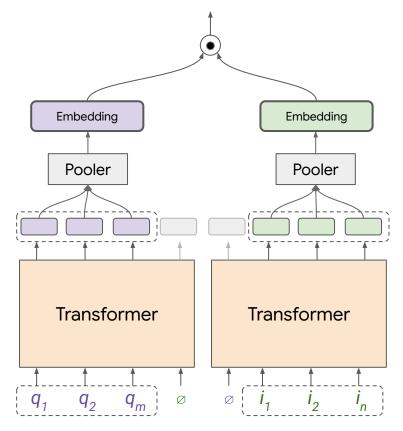
• Embedding matching from generic dual-encoder teacher (e.g., SentenceBERT) also shows gains:

Dataset	Natural Questions (Dev)						MSMARCO (Dev)				
Method	67.5M			11.3M			67	.5M	11.3M		
Methou	R@5	R@20	R@100	R@5	R@20	R@100	MRR@10	nDCG@10	MRR@10	nDCG@10	
Train student directly	36.2	59.7	80.0	24.8	44.7	67.5	22.6	27.2	18.6	22.5	

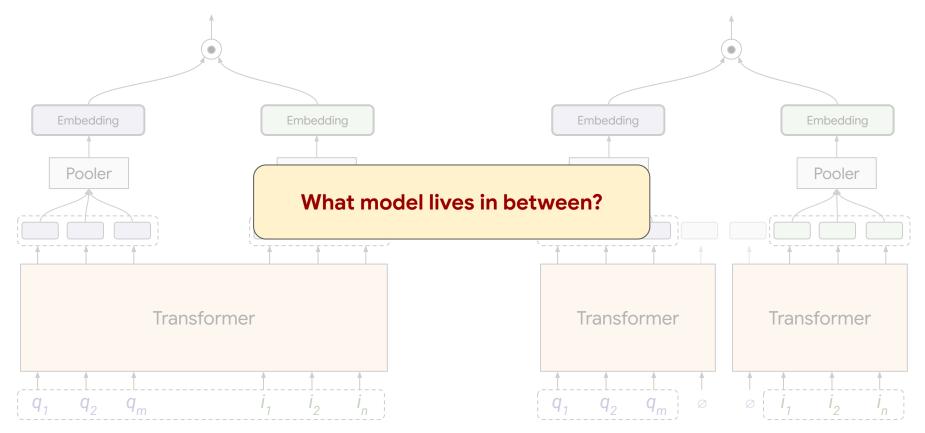
Table 4. Retrieval performance (full recall against all documents in the corpus) of various student DE models on NQ and MSMARCO dev set, including symmetric DE model (67.5M or 11.3M transformer as both encoders) and asymmetric DE student model. Teacher achieved R@5 = 72.3, R@20 = 86.1, and R@100 = 93.6 on NQ and MRR@10 = 37.2 and nDCG@10 = 44.2 on MSMARCO.

USTAD: cross- and dual-encoder mode





USTAD: cross- and dual-encoder mode

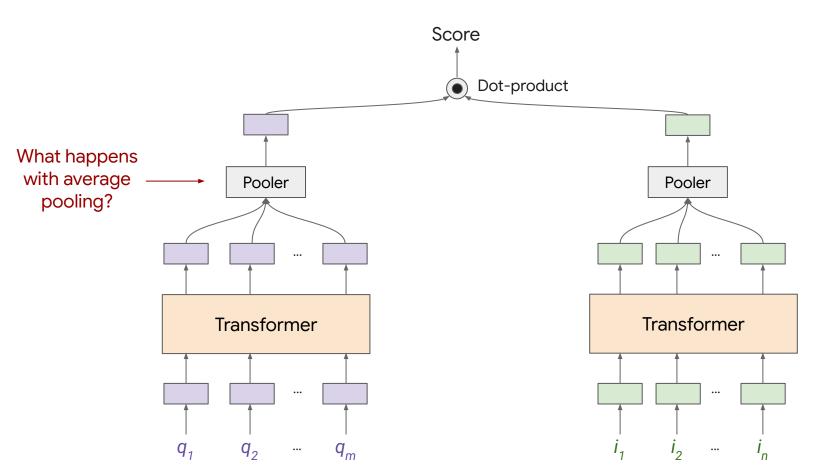


Agenda

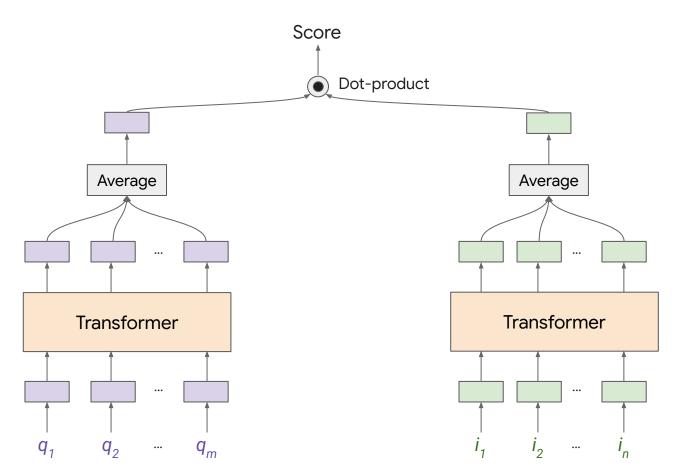
- ^{o1} A (neural) retrieval primer
- ⁰² Limits of dual encoders
- ⁰³ Unified cross & dual encoders
- Hybrid cross & dual encoders
- ^{o5} Conclusion & future work

Google Research

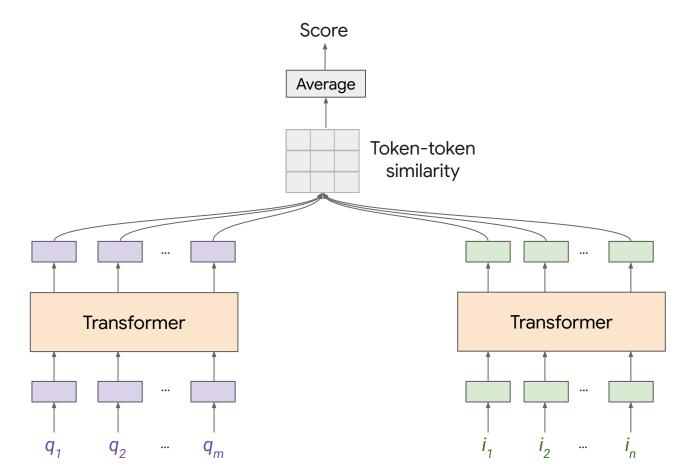
Dual-encoder: recap



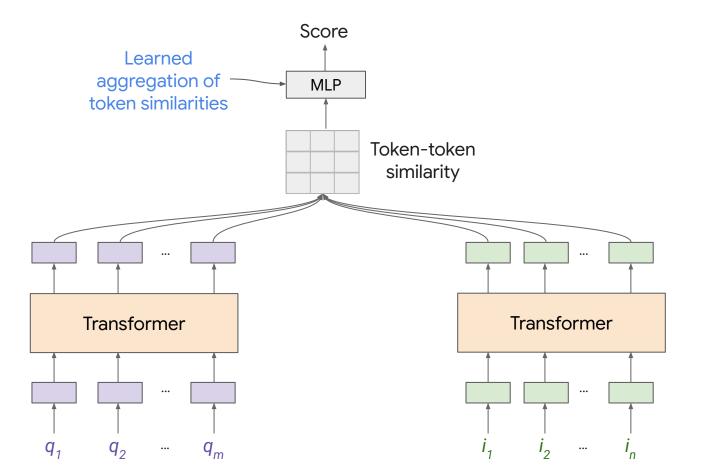
A closer look at average pooling



A closer look at average pooling

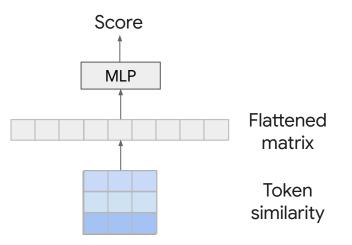


Learnable late-interaction (LITE)



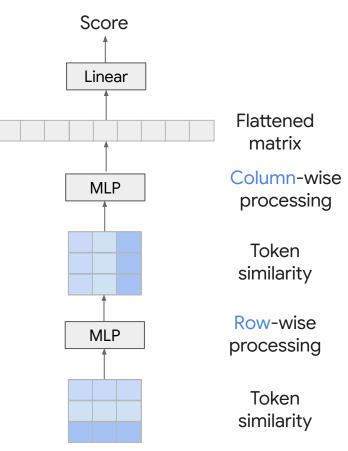
A closer look at the MLP

• Flattened LITE: operate on flattened token similarities



A closer look at the MLP

- Separable LITE: alternately process rows & columns
- MLP-Mixer style



Efficient document ranking with learnable late interactions. Ji et al. arXiV 2024.

Comparison to ColBERT

• ColBERT is a canonical late-interaction model, of the form:

$$s(q, i) = \sum_{a} \max_{b} q_{a}^{T} i_{b}$$

- This involves a fixed aggregation of query and item tokens
 - May not be appropriate in all settings
- On the other hand, ColBERT is amenable to retrieval as well

Approximation power of dual-encoders

- Can dual-encoders fit any (reasonable) relevance function?
- Yes, with sufficiently high embedding dimension!

Proposition. Under mild technical conditions, any continuous query-item score function s(q, i) can be approximated by some $Z(q)^T W(i)$, where Z(q), W(i) have at most countably infinite dimension.

• But what if the embedding size is restricted?

Approximation limits of dual-encoders

- Dual-encoders cannot approximate arbitrary functions with a restricted dimension!
 - Embedding dimension needs to scale with the sequence length

Proposition. Suppose queries and items are represented as length *L* sequences in some *P* embedding space. There exists a continuous function s(q, i) such that, for any encoders Z(q), W(d)into some Q < PL dimensional space, $Z(q)^TW(d)$ suffers a constant approximation error against *s*.

Approximation power of LITE

- On the other hand, LITE turns out to be a universal approximator!
- Notably:
 - Without position encodings, result holds (ColBERT fails in this case)
 - With position encodings, result holds over (two!) pooled tokens' similarity

Proposition. Suppose queries and items are represented as length *L* sequences in some *P* embedding space. For any continuous function s(q, i), there is a LITE model (i.e., Transformer + MLP) that can approximate s up to arbitrary precision.

Experiments: in-domain re-ranking

4x less

• LITE effectively interpolates between cross- & dual-encoders

	Scorer		atency (in ms)	Storage	MS MA MR	ARCO R@10			
	CE (student)	10990	$0 \times$		0.395	← H	ighest qu	uality, but
	DE		42	$1 \times$		0.355		highes	t cost
	ColBERT		62	$200 \times$		0.383			
	Separable L	ITE	111	$200 \times$		0.393			
	-Small sep L	ITE	56	$50 \times$		0.391			
ess document tokens		MS M	IARCO	DL	2019	DL	2020	Ň	Q
	Scorer	MRR	nDCG	MRR	nDCG	MRR	nDCG	MRR	nDCG
	DE	0.355	0.413	0.861	0.744	0.842	0.723	0.699	0.611
	ColBERT	0.383	0.442	0.878	0.753	0.860	0.731	0.756	0.689
	Sep LITE	0.393	0.452	0.898	0.765	0.873	0.756	0.769	0.693

Experiments: in-domain re-ranking

• LITE effectively interpolates between cross- & dual-encoders

	Scorer		atency (in ms)	Storage	MS MA MRI	ARCO R@10			
	CE (student)		10990	0 imes		0.395			
	DE		42	$1 \times$		0.355			E quality
	ColBERT		62	$200 \times$		0.383	wit	h much l	ower cost
	Separable LI	TE	111	$200 \times$		0.393			
	-Small sep LI'	TE	56	50 imes		0.391			
4x less document									
tokens		MS M	IARCO	DL	2019	DL	2020	N	Q
	Scorer	MRR	nDCG	MRR	nDCG	MRR	nDCG	MRR	nDCG
	DE	0.355	0.413	0.861	0.744	0.842	0.723	0.699	0.611
	ColBERT	0.383	0.442	0.878	0.753	0.860	0.731	0.756	0.689
	Sep LITE	0.393	0.452	0.898	0.765	0.873	0.756	0.769	0.693

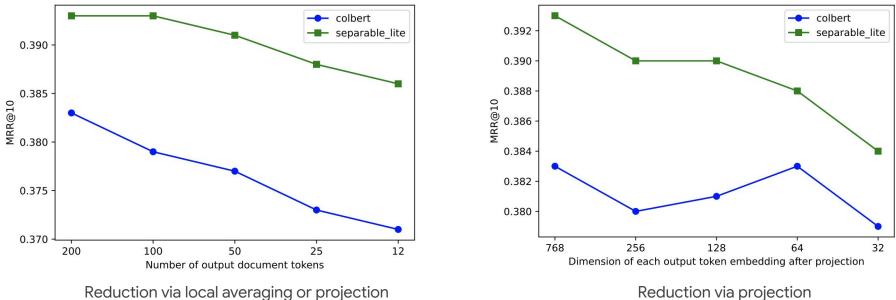
Experiments: in-domain re-ranking

• LITE effectively interpolates between cross- & dual-encoders

	Scorer		atency in ms)	Storage	MS MA MRI	ARCO R@10			
	CE (student)		10990	0 imes		0.395			
	DE		42	$1 \times$		0.355	•		
	ColBERT		62	$200 \times$		0.383	S	•	tly better
	Separable LI	TE	111	$200 \times$		0.393		than DE	quality
	-Small sep LI'	TE	56	$50 \times$		0.391	×		
4x less document									
tokens		MS M	IARCO	DL	2019	DL	2020	N	Q
	Scorer	MRR	nDCG	MRR	nDCG	MRR	nDCG	MRR	nDCG
	DE	0.355	0.413	0.861	0.744	0.842	0.723	0.699	0.611
	ColBERT	0.383	0.442	0.878	0.753	0.860	0.731	0.756	0.689
	Sep LITE	0.393	0.452	0.898	0.765	0.873	0.756	0.769	0.693

Experimental results: cost reduction

- Lightweight scoring methods require more storage than dual-encoders
- LITE performs well with pooling and/or reduced embedding size!



Reduction via local averaging or projection

Experiments: out-of-domain re-ranking

• LITE shows consistently good generalisation on BEIR tasks

Dataset	ColBERT	Sep LITE	CE
T-COVID	0.761	0.763	0.771
NFCorpus	0.356	0.358	0.361
NQ	0.525	0.540	0.552
HotpotQA	0.685	0.681	0.728
FiQA-2018	0.330	0.336	0.346
ArguAna	0.433	0.424	0.519
Touché-2020	0.274	0.305	0.300
CQAD	0.363	0.374	0.378
Quora	0.767	0.839	0.832
DBPedia	0.410	0.434	0.438
SCIDOCS	0.155	0.164	0.167
FEVER	0.782	0.788	0.804
C-FEVER	0.190	0.213	0.232
SciFact	0.667	0.633	0.695

Agenda

- ^{o1} A (neural) retrieval primer
- ⁰² Limits of dual encoders
- ⁰³ Unified cross & dual encoders
- ⁰⁴ Hybrid cross & dual encoders
- ^{os} Conclusion & future work

Google Research

Cross-versus dual-encoders

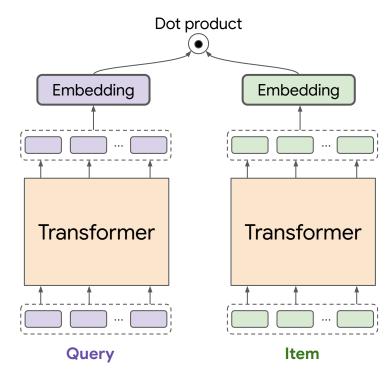
Dual-encoders tend to underperform for re-ranking

Why does this happen?

Poorer margins Expressivity with small dimension

What can we do about it? Score-based distillation Architecture modification

Lightweight scoring



Future work

Further optimising the encoder (cost, quality) tradeoff Can we get the best of both worlds?

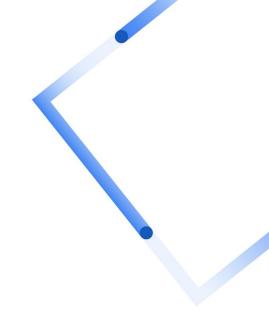
Unified retrieval and re-ranking Do we really need two phases?

Generative retrieval and re-ranking Do we even need encoder models?!

Thank You

Aditya Krishna Menon

Research Scientist



Google Research