
Learning from Corrupted Binary Labels via
Class-Probability Estimation

Aditya Krishna Menon
Aug 6th, 2015

National ICT Australia and The Australian National University

1 / 86

2 / 86

Learning from binary labels

+	
 +	

+	

+	
 -­‐	

-­‐	

-­‐	

-­‐	

3 / 86

Learning from binary labels

+	
 +	

+	

+	
 -­‐	

-­‐	

-­‐	

-­‐	

?	

4 / 86

Learning from binary labels

+	
 +	

+	

+	
 -­‐	

-­‐	

-­‐	

-­‐	

5 / 86

Learning from noisy labels

+	

+	

+	

+	

-­‐	

-­‐	

-­‐	

-­‐	

6 / 86

Learning from positive and unlabelled data

+	

+	

?	

?	

?	

?	

?	
 ?	

7 / 86

Learning from binary labels

+	
 +	

+	

+	
 -­‐	

-­‐	

-­‐	

-­‐	

nature learner
S∼ Dn

Goal: good classification wrt distribution D
8 / 86

Learning from corrupted labels

+	
 +	

+	

+	
 -­‐	

-­‐	

-­‐	

-­‐	

nature corruptor learner
S∼ Dn S∼ Dn

Goal: good classification wrt (unobserved) distribution D
9 / 86

Learning from corrupted labels: applications

Learning from noisy annotators

Q: How can we learn a good classifier from corrupted labels?
A: By performing class-probability estimation (e.g. logistic regression).

Learning from Corrupted Binary Labels

Classification with Corrupted Labels

Q: Is a location a habitat for some rare animal?

Balanced Error is Corruption-Immune
The Balanced Error (BER) of a classifier is the mean
of its false positive and negative rates.

We can relate the clean and corrupted BER:

The Corruption Model

Estimating Corruption Parameters
Define

Research Excellence in ICT
Wealth Creation for Australia

Aditya Menon, Brendan van Rooyen, Cheng Soon Ong, Bob Williamson

Experimental Validation
Noise rates estimated via a neural network on
corrupted data are reliable on several UCI datasets.

0 0.1 0.2 0.3 0.4

−0.06

−0.03

0

Ground−truth noise

B
ia

s
 o

f
E

s
ti
m

a
te

mnist

Mean

Median

Suppose the “clean” class conditionals are P, Q, but,
for some unknown , we observe samples from

i.e. we see mixtures of the +’ve and –’ve distributions

e.g., in the habitat problem, we have access to (P,
M), where M is the marginal distribution.

Generally, we have positive
examples where the animal is
known to reside, but other
locations have unknown label.

We study how class-probability estimation, treating
labels as if they are clean, can address such tasks.

✔"
✔"

✔"
✖!

✔"
✖!
✖!
✖!

✔"
✔"

✖!
✖!

Classification with these estimates is favourable
compared with an oracle that knows the noise rates.
We also observe low degradation in terms of BER.

Q: Does a song feature an oboe?

Labels collected through e.g. Mechanical Turk are likely
to be highly noisy.

Often, we need to learn a classifier given labels that
are corrupted versions of what we actually want.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Learning from Corrupted Binary Labels via Class-Probability Estimation

2.1. Classifiers, scorers, and risks

A classifier is any function f : X ! {±1}. The false posi-
tive and false negative rates of a classifier f are

(FPRD(f), FNRD(f)) =

✓
P

X⇠Q
(f(X) = 1), P

X⇠P
(f(X) = �1)

◆
.

Given a function : [0, 1]3 ! [0, 1], a classification risk
ClassD

 : {±1}X ! [0, 1] assesses the performance of a
classifier f via (Narasimhan et al., 2014)

ClassD
 (f) = (FPRD(f), FNRD(f), ⇡).

A canonical example is the misclassification error,

ERRD(f) = ⇡ · FNRD(f) + (1 � ⇡) · FPRD(f).

A scorer is any function s : X ! R. Many learning meth-
ods (e.g. SVMs) output a scorer, from which a classifier is
formed by thresholding about some t 2 R. We denote the
resulting classifier by thresh(s, t) : x 7! sign(s(x) � t).
We use ClassD

 (s; t) to refer to ClassD
 (thresh(s, t)).

A loss is any function ` : {±1} ⇥ R ! R+. Given a distri-
bution D, the `-risk of a scorer s is defined as

LD
` (s) = E

(X,Y)⇠D
[`(Y, s(X))] . (1)

We say ` is strictly proper composite (Reid & Williamson,
2010) if argmins LD

` (s) is some strictly monotone trans-
formation of ⌘, i.e. we can recover class-probabilities
from the optimal prediction via the link function . We call
class-probability estimation the task of minimising Equa-
tion 1 for some strictly proper composite `.

The conditional Bayes-risk of a strictly proper composite
` is L` : ⌘ 7! ⌘`1((⌘)) + (1 � ⌘)`�1((⌘)). We call
` strongly proper composite with modulus � if L` is �-
strongly concave (Agarwal, 2014). Canonical examples are
the logistic and exponential loss, as used in logistic regres-
sion and AdaBoost respectively.

The -classification regret of a classifier f : X ! {±1} is

regretD
 (f) = ClassD

 (f) � inf
g : X!{±1}

ClassD
 (g).

The `-regret of a scorer, regretD
` , is defined analogously.

2.2. Learning from contaminated distributions

Suppose DP,Q,⇡ is some “clean” distribution where per-
formance will be assessed. (We do not assume that
D is separable.) In MC learning (Scott et al., 2013),
we observe samples from some corrupted distribution
Corr(D,↵, �, ⇡corr)

1 over X ⇥ {±1}, for some unknown

1Where the parameters are clear from context, we occasionally
refer to the corrupted distribution as Dcorr.

Quantity Clean Corrupted

Joint distribution D Corr(D,↵, �, ⇡corr)
or Dcorr

Class-conditionals P, Q Pcorr, Qcorr

Base rate ⇡ ⇡corr

Class-probability ⌘ ⌘corr

 -optimal threshold tD tDcorr,

Table 1. Common quantities on clean and corrupted distributions.

noise parameters ↵, � 2 [0, 1] with ↵ + � < 1. The corre-
sponding corrupted class-conditionals Pcorr, Qcorr are

Pcorr = (1 � ↵) · P + ↵ · Q

Qcorr = � · P + (1 � �) · Q,
(2)

and the corrupted base rate ⇡corr in general has no relation
to the clean base rate ⇡. (The assumption that ↵+� < 1 is
as per Scott et al. (2013). If ↵+� = 1, then Pcorr = Qcorr,
making learning impossible, whereas if ↵+ � > 1, we can
swap Pcorr, Qcorr.) Table 1 summarises common quantities
on the clean and corrupted distributions.

From (2), we see that none of Pcorr, Qcorr or ⇡corr con-
tain any information about ⇡ in general. Thus, esti-
mating ⇡ from Corr(D,↵, �, ⇡corr) is impossible with-
out further assumptions, because the parameter is non-
identifiable: for a fixed (P, Q) and ↵, �, for every choice
of ⇡ 2 [0, 1], we arrive at the same corrupted distribution
Corr(D,↵, �, ⇡corr). The parameters ↵, � are also non-
identifiable in general, but can be estimated if we impose
some assumptions on D (Scott et al., 2013).

2.3. Special cases of label corruption

Two special cases of MC learning are notable. In learning
from class-conditional label noise (CCN learning) (An-
gluin & Laird, 1988), positive samples have labels flipped
with probability ⇢+, and negative samples with probability
⇢�. This can be shown to reduce to MC learning with

↵ = ⇡�1
corr · (1� ⇡) · ⇢� , � = (1� ⇡corr)

�1 · ⇡ · ⇢+, (3)

and the corrupted base rate ⇡corr = (1�⇢+)·⇡+⇢�·(1�⇡).
(See Supplementary Material for details.)

In learning from positive and unlabelled data (PU learn-
ing) (Denis, 1998), one has access to unlabelled samples
in lieu of negative samples. There are two subtly dif-
ferent PU settings: in the case-controlled setting (Ward
et al., 2009), the unlabelled samples are drawn from the
marginal distribution M , corresponding to MC learning
with ↵ = 0, � = ⇡, and ⇡corr arbitrary. In the censoring
setting (Elkan & Noto, 2008), observations are drawn from
D followed by a label censoring procedure. This is in fact
a special of CCN (and hence MC) learning with ⇢� = 0.

In general, to classify, we need to know when the
“clean” class-probability function > t. But we can
show that the corrupted probabilities satisfy:

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Learning from Corrupted Binary Labels via Class-Probability Estimation

This does not require D to be separable (i.e. (8x) ⌘(x) 2
{0, 1}), but instead stipulates that some instance is “per-
fectly positive”, and another “perfectly negative”. This as-
sumption is equivalent to the “mutually irreducible” condi-
tion of Scott et al. (2013) (see Supplementary Material).

Equipped with this assumption, and defining

⌘min = inf
x2X

⌘corr(x) and ⌘max = sup
x2X

⌘corr(x),

we can compute the corruption parameters as follows.

Proposition 10. Pick any DM,⌘ satisfying Equation 14.
Then, for any Corr(D,↵, �, ⇡corr),

↵ =
⌘min · (⌘max � ⇡corr)

⇡corr · (⌘max � ⌘min)

� =
(1 � ⌘max) · (⇡corr � ⌘min)

(1 � ⇡corr) · (⌘max � ⌘min)
.

(15)

Importantly, the right hand sides above involve quantities
that can be estimated given only corrupted data. Thus,
plugging in estimates of ⌘̂min, ⌘̂max, ⇡̂corr into Equation 15,
we obtain estimates ↵̂, �̂ of ↵, �. (Observe that without
the weak separability assumption, our expressions for ↵, �
would depend on the minimal and maximal values of ⌘.
These are unknown in general, and since we do not have
access to D, cannot be estimated.)

The formulae for the noise rates simplify in special cases;
e.g., in CCN learning (see Supplementary Material),

⇢+ = 1 � ⌘max and ⇢� = ⌘min.

Thus, corrupted class-probability estimation gives a simple
means of estimating noise rates for CCN problems.

6.2. Estimating ⇡ from ⌘corr in special cases

Unlike the general case, in both CCN and PU learning, ⇡
may be estimated. This is because in each case, some in-
formation about ⇡ is present in (Pcorr, Qcorr) or ⇡corr. For
example, in CCN learning (see Supplementary Material),

⇡ =
⇡corr � ⌘min

⌘max � ⌘min
,

while for the case-controlled PU setting,

⇡ =
⇡corr

1 � ⇡corr
· 1 � ⌘max

⌘max
.

Estimating ⇡ may be of inherent interest beyond its use
in computing classification thresholds, as e.g. in case-
controlled PU learning scenarios, it lets us assess how
prevalent a characteristic is in the underlying population.

6.3. Practical considerations

Equation 15 is an asymptotic identity. In practice, we typ-
ically employ estimates ⌘̂min, ⌘̂max computed from a finite
sample. We note several points related to this estimation.

First, it is crucial that one employs a rich model class (e.g.
Gaussian kernel logistic regression, or single-layer neural
network with large number of hidden units). With a mis-
specified model, it is impossible to determine whether the
observed range reflects that of ⌘corr, or simply arises from
an inability to model ⌘corr5. For example, with a linear
logistic regression model ⌘̂corr(x) = �(hw, xi + b) ap-
plied to instances from Rd, our estimated ⌘̂max may be
arbitrarily close to 1 regardless of ↵, �. This is because
⌘̂corr(N · sign(w)) = �(N ||w|| + b) ! 1 as N ! 1.

Second, when constructing ⌘̂corr, one will often have to
choose certain hyper-parameters (e.g. strength of regular-
isation). Motivated by our regret bounds, these can be cho-
sen to yield the best corrupted class-probability estimates
⌘̂corr, as measured by some strictly proper loss. Thus, one
can tune parameters by cross-validation on the corrupted
data; clean samples are not required.

Third, for statistical purposes, it is ideal to compute
⌘̂min, ⌘̂max from a fresh sample not used for constructing
probability estimates ⌘̂corr. These range estimates may
even be computed on unlabelled test instances, as they do
not require ground truth labels. (This does not constitute
overfitting to the test set, as the underlying model for ⌘̂corr
is learned purely from corrupted training data.)

Fourth, the sample maximum and minimum are clearly sus-
ceptible to outliers. Therefore, it may be preferable to em-
ploy e.g. the 99% and 1% quantiles as a robust alternative.
Alternately, one may perform some form of aggregation
(e.g. the bootstrap) to smoothen the estimates.

Finally, to compute a suitable threshold for classification,
noisy estimates of ↵, � may be sufficient. For example,
in CCN learning, we only need the estimated difference
⇢̂+ � ⇢̂� to be comparable to the true difference ⇢+ � ⇢�
(by Equation 11). du Plessis et al. (2014) performed such
an analysis for the case-controlled PU learning setting.

Relation to existing work The estimator in Equation 15
may be seen as a generalisation of that proposed in Elkan
& Noto (2008) for the censoring version of PU learning.

Scott et al. (2013) proposed a means of estimating the
noise parameters, based on a reduction to the problem of
mixture proportion estimation. However, it is not clear
that the resulting approach is practically feasible. By an
interpretation provided by Blanchard et al. (2010), the

5Additionally, with misspecified models, convex losses are
known to be non-robust to label noise (Long & Servedio, 2008).

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Learning from Corrupted Binary Labels via Class-Probability Estimation

This does not require D to be separable (i.e. (8x) ⌘(x) 2
{0, 1}), but instead stipulates that some instance is “per-
fectly positive”, and another “perfectly negative”. This as-
sumption is equivalent to the “mutually irreducible” condi-
tion of Scott et al. (2013) (see Supplementary Material).

Equipped with this assumption, and defining

⌘min = inf
x2X

⌘corr(x) and ⌘max = sup
x2X

⌘corr(x),

we can compute the corruption parameters as follows.

Proposition 10. Pick any DM,⌘ satisfying Equation 14.
Then, for any Corr(D,↵, �, ⇡corr),

↵ =
⌘min · (⌘max � ⇡corr)

⇡corr · (⌘max � ⌘min)

� =
(1 � ⌘max) · (⇡corr � ⌘min)

(1 � ⇡corr) · (⌘max � ⌘min)
.

(15)

Importantly, the right hand sides above involve quantities
that can be estimated given only corrupted data. Thus,
plugging in estimates of ⌘̂min, ⌘̂max, ⇡̂corr into Equation 15,
we obtain estimates ↵̂, �̂ of ↵, �. (Observe that without
the weak separability assumption, our expressions for ↵, �
would depend on the minimal and maximal values of ⌘.
These are unknown in general, and since we do not have
access to D, cannot be estimated.)

The formulae for the noise rates simplify in special cases;
e.g., in CCN learning (see Supplementary Material),

⇢+ = 1 � ⌘max and ⇢� = ⌘min.

Thus, corrupted class-probability estimation gives a simple
means of estimating noise rates for CCN problems.

6.2. Estimating ⇡ from ⌘corr in special cases

Unlike the general case, in both CCN and PU learning, ⇡
may be estimated. This is because in each case, some in-
formation about ⇡ is present in (Pcorr, Qcorr) or ⇡corr. For
example, in CCN learning (see Supplementary Material),

⇡ =
⇡corr � ⌘min

⌘max � ⌘min
,

while for the case-controlled PU setting,

⇡ =
⇡corr

1 � ⇡corr
· 1 � ⌘max

⌘max
.

Estimating ⇡ may be of inherent interest beyond its use
in computing classification thresholds, as e.g. in case-
controlled PU learning scenarios, it lets us assess how
prevalent a characteristic is in the underlying population.

6.3. Practical considerations

Equation 15 is an asymptotic identity. In practice, we typ-
ically employ estimates ⌘̂min, ⌘̂max computed from a finite
sample. We note several points related to this estimation.

First, it is crucial that one employs a rich model class (e.g.
Gaussian kernel logistic regression, or single-layer neural
network with large number of hidden units). With a mis-
specified model, it is impossible to determine whether the
observed range reflects that of ⌘corr, or simply arises from
an inability to model ⌘corr5. For example, with a linear
logistic regression model ⌘̂corr(x) = �(hw, xi + b) ap-
plied to instances from Rd, our estimated ⌘̂max may be
arbitrarily close to 1 regardless of ↵, �. This is because
⌘̂corr(N · sign(w)) = �(N ||w|| + b) ! 1 as N ! 1.

Second, when constructing ⌘̂corr, one will often have to
choose certain hyper-parameters (e.g. strength of regular-
isation). Motivated by our regret bounds, these can be cho-
sen to yield the best corrupted class-probability estimates
⌘̂corr, as measured by some strictly proper loss. Thus, one
can tune parameters by cross-validation on the corrupted
data; clean samples are not required.

Third, for statistical purposes, it is ideal to compute
⌘̂min, ⌘̂max from a fresh sample not used for constructing
probability estimates ⌘̂corr. These range estimates may
even be computed on unlabelled test instances, as they do
not require ground truth labels. (This does not constitute
overfitting to the test set, as the underlying model for ⌘̂corr
is learned purely from corrupted training data.)

Fourth, the sample maximum and minimum are clearly sus-
ceptible to outliers. Therefore, it may be preferable to em-
ploy e.g. the 99% and 1% quantiles as a robust alternative.
Alternately, one may perform some form of aggregation
(e.g. the bootstrap) to smoothen the estimates.

Finally, to compute a suitable threshold for classification,
noisy estimates of ↵, � may be sufficient. For example,
in CCN learning, we only need the estimated difference
⇢̂+ � ⇢̂� to be comparable to the true difference ⇢+ � ⇢�
(by Equation 11). du Plessis et al. (2014) performed such
an analysis for the case-controlled PU learning setting.

Relation to existing work The estimator in Equation 15
may be seen as a generalisation of that proposed in Elkan
& Noto (2008) for the censoring version of PU learning.

Scott et al. (2013) proposed a means of estimating the
noise parameters, based on a reduction to the problem of
mixture proportion estimation. However, it is not clear
that the resulting approach is practically feasible. By an
interpretation provided by Blanchard et al. (2010), the

5Additionally, with misspecified models, convex losses are
known to be non-robust to label noise (Long & Servedio, 2008).

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Learning from Corrupted Binary Labels via Class-Probability Estimation

This does not require D to be separable (i.e. (8x) ⌘(x) 2
{0, 1}), but instead stipulates that some instance is “per-
fectly positive”, and another “perfectly negative”. This as-
sumption is equivalent to the “mutually irreducible” condi-
tion of Scott et al. (2013) (see Supplementary Material).

Equipped with this assumption, and defining

⌘min = inf
x2X

⌘corr(x) and ⌘max = sup
x2X

⌘corr(x),

we can compute the corruption parameters as follows.

Proposition 10. Pick any DM,⌘ satisfying Equation 14.
Then, for any Corr(D,↵, �, ⇡corr),

↵ =
⌘min · (⌘max � ⇡corr)

⇡corr · (⌘max � ⌘min)

� =
(1 � ⌘max) · (⇡corr � ⌘min)

(1 � ⇡corr) · (⌘max � ⌘min)
.

(15)

Importantly, the right hand sides above involve quantities
that can be estimated given only corrupted data. Thus,
plugging in estimates of ⌘̂min, ⌘̂max, ⇡̂corr into Equation 15,
we obtain estimates ↵̂, �̂ of ↵, �. (Observe that without
the weak separability assumption, our expressions for ↵, �
would depend on the minimal and maximal values of ⌘.
These are unknown in general, and since we do not have
access to D, cannot be estimated.)

The formulae for the noise rates simplify in special cases;
e.g., in CCN learning (see Supplementary Material),

⇢+ = 1 � ⌘max and ⇢� = ⌘min.

Thus, corrupted class-probability estimation gives a simple
means of estimating noise rates for CCN problems.

6.2. Estimating ⇡ from ⌘corr in special cases

Unlike the general case, in both CCN and PU learning, ⇡
may be estimated. This is because in each case, some in-
formation about ⇡ is present in (Pcorr, Qcorr) or ⇡corr. For
example, in CCN learning (see Supplementary Material),

⇡ =
⇡corr � ⌘min

⌘max � ⌘min
,

while for the case-controlled PU setting,

⇡ =
⇡corr

1 � ⇡corr
· 1 � ⌘max

⌘max
.

Estimating ⇡ may be of inherent interest beyond its use
in computing classification thresholds, as e.g. in case-
controlled PU learning scenarios, it lets us assess how
prevalent a characteristic is in the underlying population.

6.3. Practical considerations

Equation 15 is an asymptotic identity. In practice, we typ-
ically employ estimates ⌘̂min, ⌘̂max computed from a finite
sample. We note several points related to this estimation.

First, it is crucial that one employs a rich model class (e.g.
Gaussian kernel logistic regression, or single-layer neural
network with large number of hidden units). With a mis-
specified model, it is impossible to determine whether the
observed range reflects that of ⌘corr, or simply arises from
an inability to model ⌘corr5. For example, with a linear
logistic regression model ⌘̂corr(x) = �(hw, xi + b) ap-
plied to instances from Rd, our estimated ⌘̂max may be
arbitrarily close to 1 regardless of ↵, �. This is because
⌘̂corr(N · sign(w)) = �(N ||w|| + b) ! 1 as N ! 1.

Second, when constructing ⌘̂corr, one will often have to
choose certain hyper-parameters (e.g. strength of regular-
isation). Motivated by our regret bounds, these can be cho-
sen to yield the best corrupted class-probability estimates
⌘̂corr, as measured by some strictly proper loss. Thus, one
can tune parameters by cross-validation on the corrupted
data; clean samples are not required.

Third, for statistical purposes, it is ideal to compute
⌘̂min, ⌘̂max from a fresh sample not used for constructing
probability estimates ⌘̂corr. These range estimates may
even be computed on unlabelled test instances, as they do
not require ground truth labels. (This does not constitute
overfitting to the test set, as the underlying model for ⌘̂corr
is learned purely from corrupted training data.)

Fourth, the sample maximum and minimum are clearly sus-
ceptible to outliers. Therefore, it may be preferable to em-
ploy e.g. the 99% and 1% quantiles as a robust alternative.
Alternately, one may perform some form of aggregation
(e.g. the bootstrap) to smoothen the estimates.

Finally, to compute a suitable threshold for classification,
noisy estimates of ↵, � may be sufficient. For example,
in CCN learning, we only need the estimated difference
⇢̂+ � ⇢̂� to be comparable to the true difference ⇢+ � ⇢�
(by Equation 11). du Plessis et al. (2014) performed such
an analysis for the case-controlled PU learning setting.

Relation to existing work The estimator in Equation 15
may be seen as a generalisation of that proposed in Elkan
& Noto (2008) for the censoring version of PU learning.

Scott et al. (2013) proposed a means of estimating the
noise parameters, based on a reduction to the problem of
mixture proportion estimation. However, it is not clear
that the resulting approach is practically feasible. By an
interpretation provided by Blanchard et al. (2010), the

5Additionally, with misspecified models, convex losses are
known to be non-robust to label noise (Long & Servedio, 2008).

⌘(x)

where is monotone for fixed . (is the
base rate of the “clean” distribution. Thus, if we
knew , we could classify optimally.

But we can estimate these from !

⌘corr

↵, �, ⇡

⌘corr

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Learning from Corrupted Binary Labels via Class-Probability Estimation

This does not require D to be separable (i.e. (8x) ⌘(x) 2
{0, 1}), but instead stipulates that some instance is “per-
fectly positive”, and another “perfectly negative”. This as-
sumption is equivalent to the “mutually irreducible” condi-
tion of Scott et al. (2013) (see Supplementary Material).

Equipped with this assumption, and defining

⌘min = inf
x2X

⌘corr(x) and ⌘max = sup
x2X

⌘corr(x),

we can compute the corruption parameters as follows.

Proposition 10. Pick any DM,⌘ satisfying Equation 14.
Then, for any Corr(D,↵, �, ⇡corr),

↵ =
⌘min · (⌘max � ⇡corr)

⇡corr · (⌘max � ⌘min)

� =
(1 � ⌘max) · (⇡corr � ⌘min)

(1 � ⇡corr) · (⌘max � ⌘min)
.

(15)

Importantly, the right hand sides above involve quantities
that can be estimated given only corrupted data. Thus,
plugging in estimates of ⌘̂min, ⌘̂max, ⇡̂corr into Equation 15,
we obtain estimates ↵̂, �̂ of ↵, �. (Observe that without
the weak separability assumption, our expressions for ↵, �
would depend on the minimal and maximal values of ⌘.
These are unknown in general, and since we do not have
access to D, cannot be estimated.)

The formulae for the noise rates simplify in special cases;
e.g., in CCN learning (see Supplementary Material),

⇢+ = 1 � ⌘max and ⇢� = ⌘min.

Thus, corrupted class-probability estimation gives a simple
means of estimating noise rates for CCN problems.

6.2. Estimating ⇡ from ⌘corr in special cases

Unlike the general case, in both CCN and PU learning, ⇡
may be estimated. This is because in each case, some in-
formation about ⇡ is present in (Pcorr, Qcorr) or ⇡corr. For
example, in CCN learning (see Supplementary Material),

⇡ =
⇡corr � ⌘min

⌘max � ⌘min
,

while for the case-controlled PU setting,

⇡ =
⇡corr

1 � ⇡corr
· 1 � ⌘max

⌘max
.

Estimating ⇡ may be of inherent interest beyond its use
in computing classification thresholds, as e.g. in case-
controlled PU learning scenarios, it lets us assess how
prevalent a characteristic is in the underlying population.

6.3. Practical considerations

Equation 15 is an asymptotic identity. In practice, we typ-
ically employ estimates ⌘̂min, ⌘̂max computed from a finite
sample. We note several points related to this estimation.

First, it is crucial that one employs a rich model class (e.g.
Gaussian kernel logistic regression, or single-layer neural
network with large number of hidden units). With a mis-
specified model, it is impossible to determine whether the
observed range reflects that of ⌘corr, or simply arises from
an inability to model ⌘corr5. For example, with a linear
logistic regression model ⌘̂corr(x) = �(hw, xi + b) ap-
plied to instances from Rd, our estimated ⌘̂max may be
arbitrarily close to 1 regardless of ↵, �. This is because
⌘̂corr(N · sign(w)) = �(N ||w|| + b) ! 1 as N ! 1.

Second, when constructing ⌘̂corr, one will often have to
choose certain hyper-parameters (e.g. strength of regular-
isation). Motivated by our regret bounds, these can be cho-
sen to yield the best corrupted class-probability estimates
⌘̂corr, as measured by some strictly proper loss. Thus, one
can tune parameters by cross-validation on the corrupted
data; clean samples are not required.

Third, for statistical purposes, it is ideal to compute
⌘̂min, ⌘̂max from a fresh sample not used for constructing
probability estimates ⌘̂corr. These range estimates may
even be computed on unlabelled test instances, as they do
not require ground truth labels. (This does not constitute
overfitting to the test set, as the underlying model for ⌘̂corr
is learned purely from corrupted training data.)

Fourth, the sample maximum and minimum are clearly sus-
ceptible to outliers. Therefore, it may be preferable to em-
ploy e.g. the 99% and 1% quantiles as a robust alternative.
Alternately, one may perform some form of aggregation
(e.g. the bootstrap) to smoothen the estimates.

Finally, to compute a suitable threshold for classification,
noisy estimates of ↵, � may be sufficient. For example,
in CCN learning, we only need the estimated difference
⇢̂+ � ⇢̂� to be comparable to the true difference ⇢+ � ⇢�
(by Equation 11). du Plessis et al. (2014) performed such
an analysis for the case-controlled PU learning setting.

Relation to existing work The estimator in Equation 15
may be seen as a generalisation of that proposed in Elkan
& Noto (2008) for the censoring version of PU learning.

Scott et al. (2013) proposed a means of estimating the
noise parameters, based on a reduction to the problem of
mixture proportion estimation. However, it is not clear
that the resulting approach is practically feasible. By an
interpretation provided by Blanchard et al. (2010), the

5Additionally, with misspecified models, convex losses are
known to be non-robust to label noise (Long & Servedio, 2008).

The RHS’es can be estimated from corrupted data!
All we need are good corrupted class-probability
estimates (e.g. via kernel logistic regression).

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Learning from Corrupted Binary Labels via Class-Probability Estimation

3. BER and AUC are immune to corruption
We now show that, remarkably, we can optimise balanced
error and AUC from corrupted data without knowledge of
the corruption process parameters ↵, � or clean base rate ⇡.

3.1. BER minimisation is immune to label corruption

The balanced error (BER) (Brodersen et al., 2010) of a
classifier is simply the mean of the class error rates,

BERD(f) =
FPRD(f) + FNRD(f)

2
.

This is a popular measure in imbalanced learning problems
(Cheng et al., 2002; Guyon et al., 2004) as it penalises sac-
rificing accuracy on the rare class in favour of accuracy on
the dominant class. The negation of the BER is also known
as the AM (arithmetic mean) metric (Menon et al., 2013),
or macro-average accuracy (Flach, 2012, pg. 60).

The BER-optimal classifier thresholds the class-probability
function at the base rate (Menon et al., 2013), so that:

argmin
f : X!{±1}

BERD(f) = thresh(⌘, ⇡) (4)

argmin
f : X!{±1}

BERDcorr(f) = thresh(⌘corr, ⇡corr). (5)

As Equation 4 depends on ⇡, it may appear that one min-
imally needs to know ⇡ to minimise the clean BER from
corrupted data. Surprisingly, the BER-optimal classifiers
in Equations 4 and 5 coincide. This is because of a simple
affine relationship between the clean and corrupted BER2.

Proposition 1. Pick any D and Corr(D,↵, �, ⇡corr).
Then, for any classifier f : X ! {±1},

BERDcorr(f) = (1 � ↵� �) · BERD(f) +
↵+ �

2
. (6)

Thus, when BER is the desired performance metric, we do
not need to estimate the noise parameters, or the clean base
rate: we can simply optimise the BER on the corrupted data
using estimates ⌘̂corr, ⇡̂corr of ⌘corr, ⇡corr, from which we
build a classifier thresh(⌘̂corr, ⇡̂corr). More generally, this
suggests that to minimise BER, we can treat the corrupted
samples as if they were clean. Thus, in a PU learning prob-
lem e.g., we treat the unlabelled samples as negative, and
obtain ⌘̂corr via class-probability estimation.

The above relationship means that we can also establish
surrogate regret bounds. Suppose we know the corrupted
base rate3 ⇡corr, and suppose that s is a scorer with low

2The result is concerned with the population BER, as opposed
to the empirical BER on a finite sample.

3In practice, we will only have some estimate of this quantity
from finite samples. It is possible to nonetheless establish consis-
tency of thresholding using such an estimate (Menon et al., 2013).

`-regret for some proper composite loss ` with link i.e.
 �1(s) is a good estimate of ⌘corr. Then, the classifier
resulting from thresholding this scorer will attain low BER.
Proposition 2. Pick any D and Corr(D,↵, �, ⇡corr). Let
` be a strongly proper composite with modulus � and link
function . Then, for any scorer s : X ! R,

regretD
BER(f)  1

1 � ↵� �
·
r

2

�
·
q

regretDcorr

` (s),

where f = thresh(s, (⇡corr)).

Thus, good estimates of the corrupted class-probabilities
let us minimise the clean BER4. However, compared to the
regret bound obtained if we could minimise ` on the clean
distribution D, we have an extra penalty of (1�↵� �)�1.
This matches our intuition that for high-noise regimes (i.e.
↵ + � ⇡ 1), we need more corrupted samples to learn ef-
fectively with respect to the clean distribution.

3.2. AUC maximisation is immune to label corruption

The area under the ROC curve (AUC) of a scorer is the
probability of a random positive instance scoring higher
than a random negative instance (Agarwal et al., 2005):

AUCD(s) = E
X⇠P,X0⇠Q


Js(X) > s(X0)K +

1

2
Js(X) = s(X0)K

�
.

Like the BER, the AUC is also a popular performance mea-
sure in imbalanced learning scenarios. In fact, the AUC
may be seen as an average of BER across a range of thresh-
olds ((Flach et al., 2011); see Supplementary Material):

AUCD(s) =
3

2
� 2 · EX⇠P [BERD(s; s(X))]. (7)

Based on this, we have a counterpart to Proposition 1.
Corollary 3. Pick any DP,Q,⇡ and Corr(D,↵, �, ⇡corr).
Then, for any scorer s : X ! R,

AUCDcorr(s) = (1 � ↵� �) · AUCD(s) +
↵+ �

2
. (8)

Thus, like the BER, optimising the AUC with respect to
the corrupted distribution optimises the AUC with respect
to the clean one. Further, via recent bounds on the AUC-
regret (Agarwal, 2014), we can show that a good corrupted
class-probability estimator will have good clean AUC.
Corollary 4. Pick any D and Corr(D,↵, �, ⇡corr). Let `
be a strongly proper composite loss with modulus �. Then,
for every scorer s : X ! R,

regretD
AUC(s)  C(⇡corr)

1 � ↵� �
·
r

2

�
·
q

regretDcorr

` (s),

4One can remove the p. in the regret bound by circumventing
class-probability estimation, e.g. with the hinge loss. However,
class-probability estimation will also allow us to estimate corrup-
tion parameters, as shall be explored in §6.

This means we can minimise balanced error as-is on
corrupted data. A similar result holds for the area
under the ROC curve (AUC).

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Learning from Corrupted Binary Labels via Class-Probability Estimation

0 0.1 0.2 0.3 0.4

−0.4

−0.2

0

Ground−truth noise

B
ia

s
o

f
E

st
im

a
te

segment

Mean
Median

0 0.1 0.2 0.3 0.4
−0.3

−0.15

0

Ground−truth noise

B
ia

s
o

f
E

st
im

a
te

spambase

Mean
Median

0 0.1 0.2 0.3 0.4

−0.06

−0.03

0

Ground−truth noise

B
ia

s
 o

f
E

s
ti
m

a
te

mnist

Mean

Median

Figure 1. Violin plots of bias in estimate ⇢̂+ over ⌧ = 100 trials on Segment (L), Spambase (M) and MNIST (R).

Dataset Noise 1 - AUC BER ERRmax ERRoracle

segment

None 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.2) 0.0002 ± 0.0001 0.0083 ± 0.0007 0.0024 ± 0.0004 0.0024 ± 0.0004

(⇢+, ⇢�) = (0.2, 0.4) 0.0007 ± 0.0002 0.0320 ± 0.0022 0.0063 ± 0.0010 0.0052 ± 0.0009

spambase

None 0.0266 ± 0.0000 0.0725 ± 0.0000 0.0696 ± 0.0000 0.0707 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0282 ± 0.0002 0.0710 ± 0.0003 0.0702 ± 0.0004 0.0702 ± 0.0004

(⇢+, ⇢�) = (0.1, 0.2) 0.0302 ± 0.0004 0.0761 ± 0.0006 0.0745 ± 0.0005 0.0741 ± 0.0005

(⇢+, ⇢�) = (0.2, 0.4) 0.0473 ± 0.0008 0.1027 ± 0.0012 0.1021 ± 0.0017 0.1004 ± 0.0012

mnist

None 0.0094 ± 0.0000 0.0373 ± 0.0000 0.0373 ± 0.0000 0.0373 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0093 ± 0.0001 0.0356 ± 0.0001 0.0356 ± 0.0001 0.0356 ± 0.0001

(⇢+, ⇢�) = (0.1, 0.2) 0.0097 ± 0.0001 0.0363 ± 0.0002 0.0362 ± 0.0002 0.0362 ± 0.0002

(⇢+, ⇢�) = (0.2, 0.4) 0.0115 ± 0.0002 0.0404 ± 0.0003 0.0405 ± 0.0003 0.0404 ± 0.0003

thyroid

None 0.0040 ± 0.0000 0.0354 ± 0.0000 0.0132 ± 0.0000 0.0132 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0151 ± 0.0037 0.0267 ± 0.0026 0.0096 ± 0.0002 0.0134 ± 0.0003

(⇢+, ⇢�) = (0.1, 0.2) 0.0183 ± 0.0027 0.0649 ± 0.0035 0.0076 ± 0.0002 0.0075 ± 0.0002

(⇢+, ⇢�) = (0.2, 0.4) 0.0834 ± 0.0152 0.1847 ± 0.0106 0.0682 ± 0.0197 0.0115 ± 0.0004

pendigits

None 0.0097 ± 0.0000 0.0454 ± 0.0000 0.0318 ± 0.0000 0.0318 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0098 ± 0.0001 0.0471 ± 0.0006 0.0346 ± 0.0007 0.0342 ± 0.0006

(⇢+, ⇢�) = (0.1, 0.2) 0.0279 ± 0.0065 0.0698 ± 0.0097 0.0932 ± 0.0242 0.0276 ± 0.0018

(⇢+, ⇢�) = (0.2, 0.4) 0.0734 ± 0.0185 0.1124 ± 0.0154 0.0981 ± 0.0238 0.0329 ± 0.0022

Table 2. Mean and standard error (standard deviation scaled by
p
⌧) of performance measures on UCI datasets injected with random

label noise ⌧ = 100 times; as all measures are in [0, 1], standard error is only a rough measure of variability. The case ⇢� = 0
corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the misclassification errors of the classifiers formed by
thresholding using ⇢̂+, ⇢̂�, and by the ground-truth ⇢+, ⇢� respectively.

error is due to inexact estimates of ⇢+, ⇢�, as opposed to
inexact estimates of ⌘corr.

Table 2 illustrates that while compared to BER and AUC,
we see slightly higher levels of degradation, in general the
misclassification rate can be effectively minimised even
in high noise regimes. As previously, we find that under
higher levels of ground-truth noise, there is in general a
slight decrease in accuracy. Interestingly, this is so even for
the oracle estimator, again corroborating our regret bounds
which indicate a penalty in high-noise regimes.

In summary, class-probability estimation lets us both esti-
mate the parameters of the contamination process, as well
as minimise a range of classification risks.

8. Conclusion
We have shown that class-probability estimation gives in-
sight into learning from corrupted binary labels. In partic-
ular, we have shown that for the balanced error and AUC,
the corruption process can be effectively ignored; given es-
timates of the corruption parameters, several classification
risks can be minimised; and that such estimates may be ob-
tained by the range of the class-probabilities.

In future work, we aim to study the impact of corruption on
estimation rates of class-probabilities; study ranking risks
beyond the AUC; and study potential extensions to more
general corruption problems e.g. multi-class scenarios, and
learning from label proportions (Quadrianto et al., 2009).

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Learning from Corrupted Binary Labels via Class-Probability Estimation

0 0.1 0.2 0.3 0.4

−0.4

−0.2

0

Ground−truth noise

B
ia

s
o
f
E

st
im

a
te

segment

Mean
Median

0 0.1 0.2 0.3 0.4
−0.3

−0.15

0

Ground−truth noise

B
ia

s
o
f
E

st
im

a
te

spambase

Mean
Median

0 0.1 0.2 0.3 0.4

−0.06

−0.03

0

Ground−truth noise

B
ia

s
 o

f
E

s
ti
m

a
te

mnist

Mean

Median

Figure 1. Violin plots of bias in estimate ⇢̂+ over ⌧ = 100 trials on Segment (L), Spambase (M) and MNIST (R).

Dataset Noise 1 - AUC BER ERRmax ERRoracle

segment

None 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.2) 0.0002 ± 0.0001 0.0083 ± 0.0007 0.0024 ± 0.0004 0.0024 ± 0.0004

(⇢+, ⇢�) = (0.2, 0.4) 0.0007 ± 0.0002 0.0320 ± 0.0022 0.0063 ± 0.0010 0.0052 ± 0.0009

spambase

None 0.0266 ± 0.0000 0.0725 ± 0.0000 0.0696 ± 0.0000 0.0707 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0282 ± 0.0002 0.0710 ± 0.0003 0.0702 ± 0.0004 0.0702 ± 0.0004

(⇢+, ⇢�) = (0.1, 0.2) 0.0302 ± 0.0004 0.0761 ± 0.0006 0.0745 ± 0.0005 0.0741 ± 0.0005

(⇢+, ⇢�) = (0.2, 0.4) 0.0473 ± 0.0008 0.1027 ± 0.0012 0.1021 ± 0.0017 0.1004 ± 0.0012

mnist

None 0.0094 ± 0.0000 0.0373 ± 0.0000 0.0373 ± 0.0000 0.0373 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0093 ± 0.0001 0.0356 ± 0.0001 0.0356 ± 0.0001 0.0356 ± 0.0001

(⇢+, ⇢�) = (0.1, 0.2) 0.0097 ± 0.0001 0.0363 ± 0.0002 0.0362 ± 0.0002 0.0362 ± 0.0002

(⇢+, ⇢�) = (0.2, 0.4) 0.0115 ± 0.0002 0.0404 ± 0.0003 0.0405 ± 0.0003 0.0404 ± 0.0003

thyroid

None 0.0040 ± 0.0000 0.0354 ± 0.0000 0.0132 ± 0.0000 0.0132 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0151 ± 0.0037 0.0267 ± 0.0026 0.0096 ± 0.0002 0.0134 ± 0.0003

(⇢+, ⇢�) = (0.1, 0.2) 0.0183 ± 0.0027 0.0649 ± 0.0035 0.0076 ± 0.0002 0.0075 ± 0.0002

(⇢+, ⇢�) = (0.2, 0.4) 0.0834 ± 0.0152 0.1847 ± 0.0106 0.0682 ± 0.0197 0.0115 ± 0.0004

pendigits

None 0.0097 ± 0.0000 0.0454 ± 0.0000 0.0318 ± 0.0000 0.0318 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0098 ± 0.0001 0.0471 ± 0.0006 0.0346 ± 0.0007 0.0342 ± 0.0006

(⇢+, ⇢�) = (0.1, 0.2) 0.0279 ± 0.0065 0.0698 ± 0.0097 0.0932 ± 0.0242 0.0276 ± 0.0018

(⇢+, ⇢�) = (0.2, 0.4) 0.0734 ± 0.0185 0.1124 ± 0.0154 0.0981 ± 0.0238 0.0329 ± 0.0022

Table 2. Mean and standard error (standard deviation scaled by
p
⌧) of performance measures on UCI datasets injected with random

label noise ⌧ = 100 times; as all measures are in [0, 1], standard error is only a rough measure of variability. The case ⇢� = 0
corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the misclassification errors of the classifiers formed by
thresholding using ⇢̂+, ⇢̂�, and by the ground-truth ⇢+, ⇢� respectively.

error is due to inexact estimates of ⇢+, ⇢�, as opposed to
inexact estimates of ⌘corr.

Table 2 illustrates that while compared to BER and AUC,
we see slightly higher levels of degradation, in general the
misclassification rate can be effectively minimised even
in high noise regimes. As previously, we find that under
higher levels of ground-truth noise, there is in general a
slight decrease in accuracy. Interestingly, this is so even for
the oracle estimator, again corroborating our regret bounds
which indicate a penalty in high-noise regimes.

In summary, class-probability estimation lets us both esti-
mate the parameters of the contamination process, as well
as minimise a range of classification risks.

8. Conclusion
We have shown that class-probability estimation gives in-
sight into learning from corrupted binary labels. In partic-
ular, we have shown that for the balanced error and AUC,
the corruption process can be effectively ignored; given es-
timates of the corruption parameters, several classification
risks can be minimised; and that such estimates may be ob-
tained by the range of the class-probabilities.

In future work, we aim to study the impact of corruption on
estimation rates of class-probabilities; study ranking risks
beyond the AUC; and study potential extensions to more
general corruption problems e.g. multi-class scenarios, and
learning from label proportions (Quadrianto et al., 2009).

0 0.1 0.2 0.3 0.4

−0.4

−0.2

0

Ground−truth noise

B
ia

s
o
f
E

st
im

a
te

segment

Mean
Median

.!

Then, under “mild” assumptions,

We can also estimate e.g. in the habitat problem:

↵, �

⌘corr(x) = �↵,�,⇡(⌘(x))

�↵,�,⇡ ↵, �, ⇡

Classification via Class-Probabilities

⇡

⇡

Implicit feedback
recommendation

?"

Habitat modelling

Q: How can we learn a good classifier from corrupted labels?
A: By performing class-probability estimation (e.g. logistic regression).

Learning from Corrupted Binary Labels

Classification with Corrupted Labels

Q: Is a location a habitat for some rare animal?

Balanced Error is Corruption-Immune
The Balanced Error (BER) of a classifier is the mean
of its false positive and negative rates.

We can relate the clean and corrupted BER:

The Corruption Model

Estimating Corruption Parameters
Define

Research Excellence in ICT
Wealth Creation for Australia

Aditya Menon, Brendan van Rooyen, Cheng Soon Ong, Bob Williamson

Experimental Validation
Noise rates estimated via a neural network on
corrupted data are reliable on several UCI datasets.

0 0.1 0.2 0.3 0.4

−0.06

−0.03

0

Ground−truth noise

B
ia

s
 o

f
E

s
ti
m

a
te

mnist

Mean

Median

Suppose the “clean” class conditionals are P, Q, but,
for some unknown , we observe samples from

i.e. we see mixtures of the +’ve and –’ve distributions

e.g., in the habitat problem, we have access to (P,
M), where M is the marginal distribution.

Generally, we have positive
examples where the animal is
known to reside, but other
locations have unknown label.

We study how class-probability estimation, treating
labels as if they are clean, can address such tasks.

✔"
✔"

✔"
✖!

✔"
✖!
✖!
✖!

✔"
✔"

✖!
✖!

Classification with these estimates is favourable
compared with an oracle that knows the noise rates.
We also observe low degradation in terms of BER.

Q: Does a song feature an oboe?

Labels collected through e.g. Mechanical Turk are likely
to be highly noisy.

Often, we need to learn a classifier given labels that
are corrupted versions of what we actually want.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Learning from Corrupted Binary Labels via Class-Probability Estimation

2.1. Classifiers, scorers, and risks

A classifier is any function f : X ! {±1}. The false posi-
tive and false negative rates of a classifier f are

(FPRD(f), FNRD(f)) =

✓
P

X⇠Q
(f(X) = 1), P

X⇠P
(f(X) = �1)

◆
.

Given a function : [0, 1]3 ! [0, 1], a classification risk
ClassD

 : {±1}X ! [0, 1] assesses the performance of a
classifier f via (Narasimhan et al., 2014)

ClassD
 (f) = (FPRD(f), FNRD(f), ⇡).

A canonical example is the misclassification error,

ERRD(f) = ⇡ · FNRD(f) + (1 � ⇡) · FPRD(f).

A scorer is any function s : X ! R. Many learning meth-
ods (e.g. SVMs) output a scorer, from which a classifier is
formed by thresholding about some t 2 R. We denote the
resulting classifier by thresh(s, t) : x 7! sign(s(x) � t).
We use ClassD

 (s; t) to refer to ClassD
 (thresh(s, t)).

A loss is any function ` : {±1} ⇥ R ! R+. Given a distri-
bution D, the `-risk of a scorer s is defined as

LD
` (s) = E

(X,Y)⇠D
[`(Y, s(X))] . (1)

We say ` is strictly proper composite (Reid & Williamson,
2010) if argmins LD

` (s) is some strictly monotone trans-
formation of ⌘, i.e. we can recover class-probabilities
from the optimal prediction via the link function . We call
class-probability estimation the task of minimising Equa-
tion 1 for some strictly proper composite `.

The conditional Bayes-risk of a strictly proper composite
` is L` : ⌘ 7! ⌘`1((⌘)) + (1 � ⌘)`�1((⌘)). We call
` strongly proper composite with modulus � if L` is �-
strongly concave (Agarwal, 2014). Canonical examples are
the logistic and exponential loss, as used in logistic regres-
sion and AdaBoost respectively.

The -classification regret of a classifier f : X ! {±1} is

regretD
 (f) = ClassD

 (f) � inf
g : X!{±1}

ClassD
 (g).

The `-regret of a scorer, regretD
` , is defined analogously.

2.2. Learning from contaminated distributions

Suppose DP,Q,⇡ is some “clean” distribution where per-
formance will be assessed. (We do not assume that
D is separable.) In MC learning (Scott et al., 2013),
we observe samples from some corrupted distribution
Corr(D,↵, �, ⇡corr)

1 over X ⇥ {±1}, for some unknown

1Where the parameters are clear from context, we occasionally
refer to the corrupted distribution as Dcorr.

Quantity Clean Corrupted

Joint distribution D Corr(D,↵, �, ⇡corr)
or Dcorr

Class-conditionals P, Q Pcorr, Qcorr

Base rate ⇡ ⇡corr

Class-probability ⌘ ⌘corr

 -optimal threshold tD tDcorr,

Table 1. Common quantities on clean and corrupted distributions.

noise parameters ↵, � 2 [0, 1] with ↵ + � < 1. The corre-
sponding corrupted class-conditionals Pcorr, Qcorr are

Pcorr = (1 � ↵) · P + ↵ · Q

Qcorr = � · P + (1 � �) · Q,
(2)

and the corrupted base rate ⇡corr in general has no relation
to the clean base rate ⇡. (The assumption that ↵+� < 1 is
as per Scott et al. (2013). If ↵+� = 1, then Pcorr = Qcorr,
making learning impossible, whereas if ↵+ � > 1, we can
swap Pcorr, Qcorr.) Table 1 summarises common quantities
on the clean and corrupted distributions.

From (2), we see that none of Pcorr, Qcorr or ⇡corr con-
tain any information about ⇡ in general. Thus, esti-
mating ⇡ from Corr(D,↵, �, ⇡corr) is impossible with-
out further assumptions, because the parameter is non-
identifiable: for a fixed (P, Q) and ↵, �, for every choice
of ⇡ 2 [0, 1], we arrive at the same corrupted distribution
Corr(D,↵, �, ⇡corr). The parameters ↵, � are also non-
identifiable in general, but can be estimated if we impose
some assumptions on D (Scott et al., 2013).

2.3. Special cases of label corruption

Two special cases of MC learning are notable. In learning
from class-conditional label noise (CCN learning) (An-
gluin & Laird, 1988), positive samples have labels flipped
with probability ⇢+, and negative samples with probability
⇢�. This can be shown to reduce to MC learning with

↵ = ⇡�1
corr · (1� ⇡) · ⇢� , � = (1� ⇡corr)

�1 · ⇡ · ⇢+, (3)

and the corrupted base rate ⇡corr = (1�⇢+)·⇡+⇢�·(1�⇡).
(See Supplementary Material for details.)

In learning from positive and unlabelled data (PU learn-
ing) (Denis, 1998), one has access to unlabelled samples
in lieu of negative samples. There are two subtly dif-
ferent PU settings: in the case-controlled setting (Ward
et al., 2009), the unlabelled samples are drawn from the
marginal distribution M , corresponding to MC learning
with ↵ = 0, � = ⇡, and ⇡corr arbitrary. In the censoring
setting (Elkan & Noto, 2008), observations are drawn from
D followed by a label censoring procedure. This is in fact
a special of CCN (and hence MC) learning with ⇢� = 0.

In general, to classify, we need to know when the
“clean” class-probability function > t. But we can
show that the corrupted probabilities satisfy:

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Learning from Corrupted Binary Labels via Class-Probability Estimation

This does not require D to be separable (i.e. (8x) ⌘(x) 2
{0, 1}), but instead stipulates that some instance is “per-
fectly positive”, and another “perfectly negative”. This as-
sumption is equivalent to the “mutually irreducible” condi-
tion of Scott et al. (2013) (see Supplementary Material).

Equipped with this assumption, and defining

⌘min = inf
x2X

⌘corr(x) and ⌘max = sup
x2X

⌘corr(x),

we can compute the corruption parameters as follows.

Proposition 10. Pick any DM,⌘ satisfying Equation 14.
Then, for any Corr(D,↵, �, ⇡corr),

↵ =
⌘min · (⌘max � ⇡corr)

⇡corr · (⌘max � ⌘min)

� =
(1 � ⌘max) · (⇡corr � ⌘min)

(1 � ⇡corr) · (⌘max � ⌘min)
.

(15)

Importantly, the right hand sides above involve quantities
that can be estimated given only corrupted data. Thus,
plugging in estimates of ⌘̂min, ⌘̂max, ⇡̂corr into Equation 15,
we obtain estimates ↵̂, �̂ of ↵, �. (Observe that without
the weak separability assumption, our expressions for ↵, �
would depend on the minimal and maximal values of ⌘.
These are unknown in general, and since we do not have
access to D, cannot be estimated.)

The formulae for the noise rates simplify in special cases;
e.g., in CCN learning (see Supplementary Material),

⇢+ = 1 � ⌘max and ⇢� = ⌘min.

Thus, corrupted class-probability estimation gives a simple
means of estimating noise rates for CCN problems.

6.2. Estimating ⇡ from ⌘corr in special cases

Unlike the general case, in both CCN and PU learning, ⇡
may be estimated. This is because in each case, some in-
formation about ⇡ is present in (Pcorr, Qcorr) or ⇡corr. For
example, in CCN learning (see Supplementary Material),

⇡ =
⇡corr � ⌘min

⌘max � ⌘min
,

while for the case-controlled PU setting,

⇡ =
⇡corr

1 � ⇡corr
· 1 � ⌘max

⌘max
.

Estimating ⇡ may be of inherent interest beyond its use
in computing classification thresholds, as e.g. in case-
controlled PU learning scenarios, it lets us assess how
prevalent a characteristic is in the underlying population.

6.3. Practical considerations

Equation 15 is an asymptotic identity. In practice, we typ-
ically employ estimates ⌘̂min, ⌘̂max computed from a finite
sample. We note several points related to this estimation.

First, it is crucial that one employs a rich model class (e.g.
Gaussian kernel logistic regression, or single-layer neural
network with large number of hidden units). With a mis-
specified model, it is impossible to determine whether the
observed range reflects that of ⌘corr, or simply arises from
an inability to model ⌘corr5. For example, with a linear
logistic regression model ⌘̂corr(x) = �(hw, xi + b) ap-
plied to instances from Rd, our estimated ⌘̂max may be
arbitrarily close to 1 regardless of ↵, �. This is because
⌘̂corr(N · sign(w)) = �(N ||w|| + b) ! 1 as N ! 1.

Second, when constructing ⌘̂corr, one will often have to
choose certain hyper-parameters (e.g. strength of regular-
isation). Motivated by our regret bounds, these can be cho-
sen to yield the best corrupted class-probability estimates
⌘̂corr, as measured by some strictly proper loss. Thus, one
can tune parameters by cross-validation on the corrupted
data; clean samples are not required.

Third, for statistical purposes, it is ideal to compute
⌘̂min, ⌘̂max from a fresh sample not used for constructing
probability estimates ⌘̂corr. These range estimates may
even be computed on unlabelled test instances, as they do
not require ground truth labels. (This does not constitute
overfitting to the test set, as the underlying model for ⌘̂corr
is learned purely from corrupted training data.)

Fourth, the sample maximum and minimum are clearly sus-
ceptible to outliers. Therefore, it may be preferable to em-
ploy e.g. the 99% and 1% quantiles as a robust alternative.
Alternately, one may perform some form of aggregation
(e.g. the bootstrap) to smoothen the estimates.

Finally, to compute a suitable threshold for classification,
noisy estimates of ↵, � may be sufficient. For example,
in CCN learning, we only need the estimated difference
⇢̂+ � ⇢̂� to be comparable to the true difference ⇢+ � ⇢�
(by Equation 11). du Plessis et al. (2014) performed such
an analysis for the case-controlled PU learning setting.

Relation to existing work The estimator in Equation 15
may be seen as a generalisation of that proposed in Elkan
& Noto (2008) for the censoring version of PU learning.

Scott et al. (2013) proposed a means of estimating the
noise parameters, based on a reduction to the problem of
mixture proportion estimation. However, it is not clear
that the resulting approach is practically feasible. By an
interpretation provided by Blanchard et al. (2010), the

5Additionally, with misspecified models, convex losses are
known to be non-robust to label noise (Long & Servedio, 2008).

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Learning from Corrupted Binary Labels via Class-Probability Estimation

This does not require D to be separable (i.e. (8x) ⌘(x) 2
{0, 1}), but instead stipulates that some instance is “per-
fectly positive”, and another “perfectly negative”. This as-
sumption is equivalent to the “mutually irreducible” condi-
tion of Scott et al. (2013) (see Supplementary Material).

Equipped with this assumption, and defining

⌘min = inf
x2X

⌘corr(x) and ⌘max = sup
x2X

⌘corr(x),

we can compute the corruption parameters as follows.

Proposition 10. Pick any DM,⌘ satisfying Equation 14.
Then, for any Corr(D,↵, �, ⇡corr),

↵ =
⌘min · (⌘max � ⇡corr)

⇡corr · (⌘max � ⌘min)

� =
(1 � ⌘max) · (⇡corr � ⌘min)

(1 � ⇡corr) · (⌘max � ⌘min)
.

(15)

Importantly, the right hand sides above involve quantities
that can be estimated given only corrupted data. Thus,
plugging in estimates of ⌘̂min, ⌘̂max, ⇡̂corr into Equation 15,
we obtain estimates ↵̂, �̂ of ↵, �. (Observe that without
the weak separability assumption, our expressions for ↵, �
would depend on the minimal and maximal values of ⌘.
These are unknown in general, and since we do not have
access to D, cannot be estimated.)

The formulae for the noise rates simplify in special cases;
e.g., in CCN learning (see Supplementary Material),

⇢+ = 1 � ⌘max and ⇢� = ⌘min.

Thus, corrupted class-probability estimation gives a simple
means of estimating noise rates for CCN problems.

6.2. Estimating ⇡ from ⌘corr in special cases

Unlike the general case, in both CCN and PU learning, ⇡
may be estimated. This is because in each case, some in-
formation about ⇡ is present in (Pcorr, Qcorr) or ⇡corr. For
example, in CCN learning (see Supplementary Material),

⇡ =
⇡corr � ⌘min

⌘max � ⌘min
,

while for the case-controlled PU setting,

⇡ =
⇡corr

1 � ⇡corr
· 1 � ⌘max

⌘max
.

Estimating ⇡ may be of inherent interest beyond its use
in computing classification thresholds, as e.g. in case-
controlled PU learning scenarios, it lets us assess how
prevalent a characteristic is in the underlying population.

6.3. Practical considerations

Equation 15 is an asymptotic identity. In practice, we typ-
ically employ estimates ⌘̂min, ⌘̂max computed from a finite
sample. We note several points related to this estimation.

First, it is crucial that one employs a rich model class (e.g.
Gaussian kernel logistic regression, or single-layer neural
network with large number of hidden units). With a mis-
specified model, it is impossible to determine whether the
observed range reflects that of ⌘corr, or simply arises from
an inability to model ⌘corr5. For example, with a linear
logistic regression model ⌘̂corr(x) = �(hw, xi + b) ap-
plied to instances from Rd, our estimated ⌘̂max may be
arbitrarily close to 1 regardless of ↵, �. This is because
⌘̂corr(N · sign(w)) = �(N ||w|| + b) ! 1 as N ! 1.

Second, when constructing ⌘̂corr, one will often have to
choose certain hyper-parameters (e.g. strength of regular-
isation). Motivated by our regret bounds, these can be cho-
sen to yield the best corrupted class-probability estimates
⌘̂corr, as measured by some strictly proper loss. Thus, one
can tune parameters by cross-validation on the corrupted
data; clean samples are not required.

Third, for statistical purposes, it is ideal to compute
⌘̂min, ⌘̂max from a fresh sample not used for constructing
probability estimates ⌘̂corr. These range estimates may
even be computed on unlabelled test instances, as they do
not require ground truth labels. (This does not constitute
overfitting to the test set, as the underlying model for ⌘̂corr
is learned purely from corrupted training data.)

Fourth, the sample maximum and minimum are clearly sus-
ceptible to outliers. Therefore, it may be preferable to em-
ploy e.g. the 99% and 1% quantiles as a robust alternative.
Alternately, one may perform some form of aggregation
(e.g. the bootstrap) to smoothen the estimates.

Finally, to compute a suitable threshold for classification,
noisy estimates of ↵, � may be sufficient. For example,
in CCN learning, we only need the estimated difference
⇢̂+ � ⇢̂� to be comparable to the true difference ⇢+ � ⇢�
(by Equation 11). du Plessis et al. (2014) performed such
an analysis for the case-controlled PU learning setting.

Relation to existing work The estimator in Equation 15
may be seen as a generalisation of that proposed in Elkan
& Noto (2008) for the censoring version of PU learning.

Scott et al. (2013) proposed a means of estimating the
noise parameters, based on a reduction to the problem of
mixture proportion estimation. However, it is not clear
that the resulting approach is practically feasible. By an
interpretation provided by Blanchard et al. (2010), the

5Additionally, with misspecified models, convex losses are
known to be non-robust to label noise (Long & Servedio, 2008).

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Learning from Corrupted Binary Labels via Class-Probability Estimation

This does not require D to be separable (i.e. (8x) ⌘(x) 2
{0, 1}), but instead stipulates that some instance is “per-
fectly positive”, and another “perfectly negative”. This as-
sumption is equivalent to the “mutually irreducible” condi-
tion of Scott et al. (2013) (see Supplementary Material).

Equipped with this assumption, and defining

⌘min = inf
x2X

⌘corr(x) and ⌘max = sup
x2X

⌘corr(x),

we can compute the corruption parameters as follows.

Proposition 10. Pick any DM,⌘ satisfying Equation 14.
Then, for any Corr(D,↵, �, ⇡corr),

↵ =
⌘min · (⌘max � ⇡corr)

⇡corr · (⌘max � ⌘min)

� =
(1 � ⌘max) · (⇡corr � ⌘min)

(1 � ⇡corr) · (⌘max � ⌘min)
.

(15)

Importantly, the right hand sides above involve quantities
that can be estimated given only corrupted data. Thus,
plugging in estimates of ⌘̂min, ⌘̂max, ⇡̂corr into Equation 15,
we obtain estimates ↵̂, �̂ of ↵, �. (Observe that without
the weak separability assumption, our expressions for ↵, �
would depend on the minimal and maximal values of ⌘.
These are unknown in general, and since we do not have
access to D, cannot be estimated.)

The formulae for the noise rates simplify in special cases;
e.g., in CCN learning (see Supplementary Material),

⇢+ = 1 � ⌘max and ⇢� = ⌘min.

Thus, corrupted class-probability estimation gives a simple
means of estimating noise rates for CCN problems.

6.2. Estimating ⇡ from ⌘corr in special cases

Unlike the general case, in both CCN and PU learning, ⇡
may be estimated. This is because in each case, some in-
formation about ⇡ is present in (Pcorr, Qcorr) or ⇡corr. For
example, in CCN learning (see Supplementary Material),

⇡ =
⇡corr � ⌘min

⌘max � ⌘min
,

while for the case-controlled PU setting,

⇡ =
⇡corr

1 � ⇡corr
· 1 � ⌘max

⌘max
.

Estimating ⇡ may be of inherent interest beyond its use
in computing classification thresholds, as e.g. in case-
controlled PU learning scenarios, it lets us assess how
prevalent a characteristic is in the underlying population.

6.3. Practical considerations

Equation 15 is an asymptotic identity. In practice, we typ-
ically employ estimates ⌘̂min, ⌘̂max computed from a finite
sample. We note several points related to this estimation.

First, it is crucial that one employs a rich model class (e.g.
Gaussian kernel logistic regression, or single-layer neural
network with large number of hidden units). With a mis-
specified model, it is impossible to determine whether the
observed range reflects that of ⌘corr, or simply arises from
an inability to model ⌘corr5. For example, with a linear
logistic regression model ⌘̂corr(x) = �(hw, xi + b) ap-
plied to instances from Rd, our estimated ⌘̂max may be
arbitrarily close to 1 regardless of ↵, �. This is because
⌘̂corr(N · sign(w)) = �(N ||w|| + b) ! 1 as N ! 1.

Second, when constructing ⌘̂corr, one will often have to
choose certain hyper-parameters (e.g. strength of regular-
isation). Motivated by our regret bounds, these can be cho-
sen to yield the best corrupted class-probability estimates
⌘̂corr, as measured by some strictly proper loss. Thus, one
can tune parameters by cross-validation on the corrupted
data; clean samples are not required.

Third, for statistical purposes, it is ideal to compute
⌘̂min, ⌘̂max from a fresh sample not used for constructing
probability estimates ⌘̂corr. These range estimates may
even be computed on unlabelled test instances, as they do
not require ground truth labels. (This does not constitute
overfitting to the test set, as the underlying model for ⌘̂corr
is learned purely from corrupted training data.)

Fourth, the sample maximum and minimum are clearly sus-
ceptible to outliers. Therefore, it may be preferable to em-
ploy e.g. the 99% and 1% quantiles as a robust alternative.
Alternately, one may perform some form of aggregation
(e.g. the bootstrap) to smoothen the estimates.

Finally, to compute a suitable threshold for classification,
noisy estimates of ↵, � may be sufficient. For example,
in CCN learning, we only need the estimated difference
⇢̂+ � ⇢̂� to be comparable to the true difference ⇢+ � ⇢�
(by Equation 11). du Plessis et al. (2014) performed such
an analysis for the case-controlled PU learning setting.

Relation to existing work The estimator in Equation 15
may be seen as a generalisation of that proposed in Elkan
& Noto (2008) for the censoring version of PU learning.

Scott et al. (2013) proposed a means of estimating the
noise parameters, based on a reduction to the problem of
mixture proportion estimation. However, it is not clear
that the resulting approach is practically feasible. By an
interpretation provided by Blanchard et al. (2010), the

5Additionally, with misspecified models, convex losses are
known to be non-robust to label noise (Long & Servedio, 2008).

⌘(x)

where is monotone for fixed . (is the
base rate of the “clean” distribution. Thus, if we
knew , we could classify optimally.

But we can estimate these from !

⌘corr

↵, �, ⇡

⌘corr

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Learning from Corrupted Binary Labels via Class-Probability Estimation

This does not require D to be separable (i.e. (8x) ⌘(x) 2
{0, 1}), but instead stipulates that some instance is “per-
fectly positive”, and another “perfectly negative”. This as-
sumption is equivalent to the “mutually irreducible” condi-
tion of Scott et al. (2013) (see Supplementary Material).

Equipped with this assumption, and defining

⌘min = inf
x2X

⌘corr(x) and ⌘max = sup
x2X

⌘corr(x),

we can compute the corruption parameters as follows.

Proposition 10. Pick any DM,⌘ satisfying Equation 14.
Then, for any Corr(D,↵, �, ⇡corr),

↵ =
⌘min · (⌘max � ⇡corr)

⇡corr · (⌘max � ⌘min)

� =
(1 � ⌘max) · (⇡corr � ⌘min)

(1 � ⇡corr) · (⌘max � ⌘min)
.

(15)

Importantly, the right hand sides above involve quantities
that can be estimated given only corrupted data. Thus,
plugging in estimates of ⌘̂min, ⌘̂max, ⇡̂corr into Equation 15,
we obtain estimates ↵̂, �̂ of ↵, �. (Observe that without
the weak separability assumption, our expressions for ↵, �
would depend on the minimal and maximal values of ⌘.
These are unknown in general, and since we do not have
access to D, cannot be estimated.)

The formulae for the noise rates simplify in special cases;
e.g., in CCN learning (see Supplementary Material),

⇢+ = 1 � ⌘max and ⇢� = ⌘min.

Thus, corrupted class-probability estimation gives a simple
means of estimating noise rates for CCN problems.

6.2. Estimating ⇡ from ⌘corr in special cases

Unlike the general case, in both CCN and PU learning, ⇡
may be estimated. This is because in each case, some in-
formation about ⇡ is present in (Pcorr, Qcorr) or ⇡corr. For
example, in CCN learning (see Supplementary Material),

⇡ =
⇡corr � ⌘min

⌘max � ⌘min
,

while for the case-controlled PU setting,

⇡ =
⇡corr

1 � ⇡corr
· 1 � ⌘max

⌘max
.

Estimating ⇡ may be of inherent interest beyond its use
in computing classification thresholds, as e.g. in case-
controlled PU learning scenarios, it lets us assess how
prevalent a characteristic is in the underlying population.

6.3. Practical considerations

Equation 15 is an asymptotic identity. In practice, we typ-
ically employ estimates ⌘̂min, ⌘̂max computed from a finite
sample. We note several points related to this estimation.

First, it is crucial that one employs a rich model class (e.g.
Gaussian kernel logistic regression, or single-layer neural
network with large number of hidden units). With a mis-
specified model, it is impossible to determine whether the
observed range reflects that of ⌘corr, or simply arises from
an inability to model ⌘corr5. For example, with a linear
logistic regression model ⌘̂corr(x) = �(hw, xi + b) ap-
plied to instances from Rd, our estimated ⌘̂max may be
arbitrarily close to 1 regardless of ↵, �. This is because
⌘̂corr(N · sign(w)) = �(N ||w|| + b) ! 1 as N ! 1.

Second, when constructing ⌘̂corr, one will often have to
choose certain hyper-parameters (e.g. strength of regular-
isation). Motivated by our regret bounds, these can be cho-
sen to yield the best corrupted class-probability estimates
⌘̂corr, as measured by some strictly proper loss. Thus, one
can tune parameters by cross-validation on the corrupted
data; clean samples are not required.

Third, for statistical purposes, it is ideal to compute
⌘̂min, ⌘̂max from a fresh sample not used for constructing
probability estimates ⌘̂corr. These range estimates may
even be computed on unlabelled test instances, as they do
not require ground truth labels. (This does not constitute
overfitting to the test set, as the underlying model for ⌘̂corr
is learned purely from corrupted training data.)

Fourth, the sample maximum and minimum are clearly sus-
ceptible to outliers. Therefore, it may be preferable to em-
ploy e.g. the 99% and 1% quantiles as a robust alternative.
Alternately, one may perform some form of aggregation
(e.g. the bootstrap) to smoothen the estimates.

Finally, to compute a suitable threshold for classification,
noisy estimates of ↵, � may be sufficient. For example,
in CCN learning, we only need the estimated difference
⇢̂+ � ⇢̂� to be comparable to the true difference ⇢+ � ⇢�
(by Equation 11). du Plessis et al. (2014) performed such
an analysis for the case-controlled PU learning setting.

Relation to existing work The estimator in Equation 15
may be seen as a generalisation of that proposed in Elkan
& Noto (2008) for the censoring version of PU learning.

Scott et al. (2013) proposed a means of estimating the
noise parameters, based on a reduction to the problem of
mixture proportion estimation. However, it is not clear
that the resulting approach is practically feasible. By an
interpretation provided by Blanchard et al. (2010), the

5Additionally, with misspecified models, convex losses are
known to be non-robust to label noise (Long & Servedio, 2008).

The RHS’es can be estimated from corrupted data!
All we need are good corrupted class-probability
estimates (e.g. via kernel logistic regression).

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Learning from Corrupted Binary Labels via Class-Probability Estimation

3. BER and AUC are immune to corruption
We now show that, remarkably, we can optimise balanced
error and AUC from corrupted data without knowledge of
the corruption process parameters ↵, � or clean base rate ⇡.

3.1. BER minimisation is immune to label corruption

The balanced error (BER) (Brodersen et al., 2010) of a
classifier is simply the mean of the class error rates,

BERD(f) =
FPRD(f) + FNRD(f)

2
.

This is a popular measure in imbalanced learning problems
(Cheng et al., 2002; Guyon et al., 2004) as it penalises sac-
rificing accuracy on the rare class in favour of accuracy on
the dominant class. The negation of the BER is also known
as the AM (arithmetic mean) metric (Menon et al., 2013),
or macro-average accuracy (Flach, 2012, pg. 60).

The BER-optimal classifier thresholds the class-probability
function at the base rate (Menon et al., 2013), so that:

argmin
f : X!{±1}

BERD(f) = thresh(⌘, ⇡) (4)

argmin
f : X!{±1}

BERDcorr(f) = thresh(⌘corr, ⇡corr). (5)

As Equation 4 depends on ⇡, it may appear that one min-
imally needs to know ⇡ to minimise the clean BER from
corrupted data. Surprisingly, the BER-optimal classifiers
in Equations 4 and 5 coincide. This is because of a simple
affine relationship between the clean and corrupted BER2.

Proposition 1. Pick any D and Corr(D,↵, �, ⇡corr).
Then, for any classifier f : X ! {±1},

BERDcorr(f) = (1 � ↵� �) · BERD(f) +
↵+ �

2
. (6)

Thus, when BER is the desired performance metric, we do
not need to estimate the noise parameters, or the clean base
rate: we can simply optimise the BER on the corrupted data
using estimates ⌘̂corr, ⇡̂corr of ⌘corr, ⇡corr, from which we
build a classifier thresh(⌘̂corr, ⇡̂corr). More generally, this
suggests that to minimise BER, we can treat the corrupted
samples as if they were clean. Thus, in a PU learning prob-
lem e.g., we treat the unlabelled samples as negative, and
obtain ⌘̂corr via class-probability estimation.

The above relationship means that we can also establish
surrogate regret bounds. Suppose we know the corrupted
base rate3 ⇡corr, and suppose that s is a scorer with low

2The result is concerned with the population BER, as opposed
to the empirical BER on a finite sample.

3In practice, we will only have some estimate of this quantity
from finite samples. It is possible to nonetheless establish consis-
tency of thresholding using such an estimate (Menon et al., 2013).

`-regret for some proper composite loss ` with link i.e.
 �1(s) is a good estimate of ⌘corr. Then, the classifier
resulting from thresholding this scorer will attain low BER.
Proposition 2. Pick any D and Corr(D,↵, �, ⇡corr). Let
` be a strongly proper composite with modulus � and link
function . Then, for any scorer s : X ! R,

regretD
BER(f)  1

1 � ↵� �
·
r

2

�
·
q

regretDcorr

` (s),

where f = thresh(s, (⇡corr)).

Thus, good estimates of the corrupted class-probabilities
let us minimise the clean BER4. However, compared to the
regret bound obtained if we could minimise ` on the clean
distribution D, we have an extra penalty of (1�↵� �)�1.
This matches our intuition that for high-noise regimes (i.e.
↵ + � ⇡ 1), we need more corrupted samples to learn ef-
fectively with respect to the clean distribution.

3.2. AUC maximisation is immune to label corruption

The area under the ROC curve (AUC) of a scorer is the
probability of a random positive instance scoring higher
than a random negative instance (Agarwal et al., 2005):

AUCD(s) = E
X⇠P,X0⇠Q


Js(X) > s(X0)K +

1

2
Js(X) = s(X0)K

�
.

Like the BER, the AUC is also a popular performance mea-
sure in imbalanced learning scenarios. In fact, the AUC
may be seen as an average of BER across a range of thresh-
olds ((Flach et al., 2011); see Supplementary Material):

AUCD(s) =
3

2
� 2 · EX⇠P [BERD(s; s(X))]. (7)

Based on this, we have a counterpart to Proposition 1.
Corollary 3. Pick any DP,Q,⇡ and Corr(D,↵, �, ⇡corr).
Then, for any scorer s : X ! R,

AUCDcorr(s) = (1 � ↵� �) · AUCD(s) +
↵+ �

2
. (8)

Thus, like the BER, optimising the AUC with respect to
the corrupted distribution optimises the AUC with respect
to the clean one. Further, via recent bounds on the AUC-
regret (Agarwal, 2014), we can show that a good corrupted
class-probability estimator will have good clean AUC.
Corollary 4. Pick any D and Corr(D,↵, �, ⇡corr). Let `
be a strongly proper composite loss with modulus �. Then,
for every scorer s : X ! R,

regretD
AUC(s)  C(⇡corr)

1 � ↵� �
·
r

2

�
·
q

regretDcorr

` (s),

4One can remove the p. in the regret bound by circumventing
class-probability estimation, e.g. with the hinge loss. However,
class-probability estimation will also allow us to estimate corrup-
tion parameters, as shall be explored in §6.

This means we can minimise balanced error as-is on
corrupted data. A similar result holds for the area
under the ROC curve (AUC).

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Learning from Corrupted Binary Labels via Class-Probability Estimation

0 0.1 0.2 0.3 0.4

−0.4

−0.2

0

Ground−truth noise

B
ia

s
o
f
E

st
im

a
te

segment

Mean
Median

0 0.1 0.2 0.3 0.4
−0.3

−0.15

0

Ground−truth noise

B
ia

s
o
f
E

st
im

a
te

spambase

Mean
Median

0 0.1 0.2 0.3 0.4

−0.06

−0.03

0

Ground−truth noise

B
ia

s
 o

f
E

s
ti
m

a
te

mnist

Mean

Median

Figure 1. Violin plots of bias in estimate ⇢̂+ over ⌧ = 100 trials on Segment (L), Spambase (M) and MNIST (R).

Dataset Noise 1 - AUC BER ERRmax ERRoracle

segment

None 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.2) 0.0002 ± 0.0001 0.0083 ± 0.0007 0.0024 ± 0.0004 0.0024 ± 0.0004

(⇢+, ⇢�) = (0.2, 0.4) 0.0007 ± 0.0002 0.0320 ± 0.0022 0.0063 ± 0.0010 0.0052 ± 0.0009

spambase

None 0.0266 ± 0.0000 0.0725 ± 0.0000 0.0696 ± 0.0000 0.0707 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0282 ± 0.0002 0.0710 ± 0.0003 0.0702 ± 0.0004 0.0702 ± 0.0004

(⇢+, ⇢�) = (0.1, 0.2) 0.0302 ± 0.0004 0.0761 ± 0.0006 0.0745 ± 0.0005 0.0741 ± 0.0005

(⇢+, ⇢�) = (0.2, 0.4) 0.0473 ± 0.0008 0.1027 ± 0.0012 0.1021 ± 0.0017 0.1004 ± 0.0012

mnist

None 0.0094 ± 0.0000 0.0373 ± 0.0000 0.0373 ± 0.0000 0.0373 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0093 ± 0.0001 0.0356 ± 0.0001 0.0356 ± 0.0001 0.0356 ± 0.0001

(⇢+, ⇢�) = (0.1, 0.2) 0.0097 ± 0.0001 0.0363 ± 0.0002 0.0362 ± 0.0002 0.0362 ± 0.0002

(⇢+, ⇢�) = (0.2, 0.4) 0.0115 ± 0.0002 0.0404 ± 0.0003 0.0405 ± 0.0003 0.0404 ± 0.0003

thyroid

None 0.0040 ± 0.0000 0.0354 ± 0.0000 0.0132 ± 0.0000 0.0132 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0151 ± 0.0037 0.0267 ± 0.0026 0.0096 ± 0.0002 0.0134 ± 0.0003

(⇢+, ⇢�) = (0.1, 0.2) 0.0183 ± 0.0027 0.0649 ± 0.0035 0.0076 ± 0.0002 0.0075 ± 0.0002

(⇢+, ⇢�) = (0.2, 0.4) 0.0834 ± 0.0152 0.1847 ± 0.0106 0.0682 ± 0.0197 0.0115 ± 0.0004

pendigits

None 0.0097 ± 0.0000 0.0454 ± 0.0000 0.0318 ± 0.0000 0.0318 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0098 ± 0.0001 0.0471 ± 0.0006 0.0346 ± 0.0007 0.0342 ± 0.0006

(⇢+, ⇢�) = (0.1, 0.2) 0.0279 ± 0.0065 0.0698 ± 0.0097 0.0932 ± 0.0242 0.0276 ± 0.0018

(⇢+, ⇢�) = (0.2, 0.4) 0.0734 ± 0.0185 0.1124 ± 0.0154 0.0981 ± 0.0238 0.0329 ± 0.0022

Table 2. Mean and standard error (standard deviation scaled by
p
⌧) of performance measures on UCI datasets injected with random

label noise ⌧ = 100 times; as all measures are in [0, 1], standard error is only a rough measure of variability. The case ⇢� = 0
corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the misclassification errors of the classifiers formed by
thresholding using ⇢̂+, ⇢̂�, and by the ground-truth ⇢+, ⇢� respectively.

error is due to inexact estimates of ⇢+, ⇢�, as opposed to
inexact estimates of ⌘corr.

Table 2 illustrates that while compared to BER and AUC,
we see slightly higher levels of degradation, in general the
misclassification rate can be effectively minimised even
in high noise regimes. As previously, we find that under
higher levels of ground-truth noise, there is in general a
slight decrease in accuracy. Interestingly, this is so even for
the oracle estimator, again corroborating our regret bounds
which indicate a penalty in high-noise regimes.

In summary, class-probability estimation lets us both esti-
mate the parameters of the contamination process, as well
as minimise a range of classification risks.

8. Conclusion
We have shown that class-probability estimation gives in-
sight into learning from corrupted binary labels. In partic-
ular, we have shown that for the balanced error and AUC,
the corruption process can be effectively ignored; given es-
timates of the corruption parameters, several classification
risks can be minimised; and that such estimates may be ob-
tained by the range of the class-probabilities.

In future work, we aim to study the impact of corruption on
estimation rates of class-probabilities; study ranking risks
beyond the AUC; and study potential extensions to more
general corruption problems e.g. multi-class scenarios, and
learning from label proportions (Quadrianto et al., 2009).

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Learning from Corrupted Binary Labels via Class-Probability Estimation

0 0.1 0.2 0.3 0.4

−0.4

−0.2

0

Ground−truth noise

B
ia

s
o
f
E

st
im

a
te

segment

Mean
Median

0 0.1 0.2 0.3 0.4
−0.3

−0.15

0

Ground−truth noise

B
ia

s
o
f
E

st
im

a
te

spambase

Mean
Median

0 0.1 0.2 0.3 0.4

−0.06

−0.03

0

Ground−truth noise

B
ia

s
 o

f
E

s
ti
m

a
te

mnist

Mean

Median

Figure 1. Violin plots of bias in estimate ⇢̂+ over ⌧ = 100 trials on Segment (L), Spambase (M) and MNIST (R).

Dataset Noise 1 - AUC BER ERRmax ERRoracle

segment

None 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.2) 0.0002 ± 0.0001 0.0083 ± 0.0007 0.0024 ± 0.0004 0.0024 ± 0.0004

(⇢+, ⇢�) = (0.2, 0.4) 0.0007 ± 0.0002 0.0320 ± 0.0022 0.0063 ± 0.0010 0.0052 ± 0.0009

spambase

None 0.0266 ± 0.0000 0.0725 ± 0.0000 0.0696 ± 0.0000 0.0707 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0282 ± 0.0002 0.0710 ± 0.0003 0.0702 ± 0.0004 0.0702 ± 0.0004

(⇢+, ⇢�) = (0.1, 0.2) 0.0302 ± 0.0004 0.0761 ± 0.0006 0.0745 ± 0.0005 0.0741 ± 0.0005

(⇢+, ⇢�) = (0.2, 0.4) 0.0473 ± 0.0008 0.1027 ± 0.0012 0.1021 ± 0.0017 0.1004 ± 0.0012

mnist

None 0.0094 ± 0.0000 0.0373 ± 0.0000 0.0373 ± 0.0000 0.0373 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0093 ± 0.0001 0.0356 ± 0.0001 0.0356 ± 0.0001 0.0356 ± 0.0001

(⇢+, ⇢�) = (0.1, 0.2) 0.0097 ± 0.0001 0.0363 ± 0.0002 0.0362 ± 0.0002 0.0362 ± 0.0002

(⇢+, ⇢�) = (0.2, 0.4) 0.0115 ± 0.0002 0.0404 ± 0.0003 0.0405 ± 0.0003 0.0404 ± 0.0003

thyroid

None 0.0040 ± 0.0000 0.0354 ± 0.0000 0.0132 ± 0.0000 0.0132 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0151 ± 0.0037 0.0267 ± 0.0026 0.0096 ± 0.0002 0.0134 ± 0.0003

(⇢+, ⇢�) = (0.1, 0.2) 0.0183 ± 0.0027 0.0649 ± 0.0035 0.0076 ± 0.0002 0.0075 ± 0.0002

(⇢+, ⇢�) = (0.2, 0.4) 0.0834 ± 0.0152 0.1847 ± 0.0106 0.0682 ± 0.0197 0.0115 ± 0.0004

pendigits

None 0.0097 ± 0.0000 0.0454 ± 0.0000 0.0318 ± 0.0000 0.0318 ± 0.0000

(⇢+, ⇢�) = (0.1, 0.0) 0.0098 ± 0.0001 0.0471 ± 0.0006 0.0346 ± 0.0007 0.0342 ± 0.0006

(⇢+, ⇢�) = (0.1, 0.2) 0.0279 ± 0.0065 0.0698 ± 0.0097 0.0932 ± 0.0242 0.0276 ± 0.0018

(⇢+, ⇢�) = (0.2, 0.4) 0.0734 ± 0.0185 0.1124 ± 0.0154 0.0981 ± 0.0238 0.0329 ± 0.0022

Table 2. Mean and standard error (standard deviation scaled by
p
⌧) of performance measures on UCI datasets injected with random

label noise ⌧ = 100 times; as all measures are in [0, 1], standard error is only a rough measure of variability. The case ⇢� = 0
corresponds to the censoring version of PU learning. ERRmax and ERRoracle are the misclassification errors of the classifiers formed by
thresholding using ⇢̂+, ⇢̂�, and by the ground-truth ⇢+, ⇢� respectively.

error is due to inexact estimates of ⇢+, ⇢�, as opposed to
inexact estimates of ⌘corr.

Table 2 illustrates that while compared to BER and AUC,
we see slightly higher levels of degradation, in general the
misclassification rate can be effectively minimised even
in high noise regimes. As previously, we find that under
higher levels of ground-truth noise, there is in general a
slight decrease in accuracy. Interestingly, this is so even for
the oracle estimator, again corroborating our regret bounds
which indicate a penalty in high-noise regimes.

In summary, class-probability estimation lets us both esti-
mate the parameters of the contamination process, as well
as minimise a range of classification risks.

8. Conclusion
We have shown that class-probability estimation gives in-
sight into learning from corrupted binary labels. In partic-
ular, we have shown that for the balanced error and AUC,
the corruption process can be effectively ignored; given es-
timates of the corruption parameters, several classification
risks can be minimised; and that such estimates may be ob-
tained by the range of the class-probabilities.

In future work, we aim to study the impact of corruption on
estimation rates of class-probabilities; study ranking risks
beyond the AUC; and study potential extensions to more
general corruption problems e.g. multi-class scenarios, and
learning from label proportions (Quadrianto et al., 2009).

0 0.1 0.2 0.3 0.4

−0.4

−0.2

0

Ground−truth noise

B
ia

s
o
f
E

st
im

a
te

segment

Mean
Median

.!

Then, under “mild” assumptions,

We can also estimate e.g. in the habitat problem:

↵, �

⌘corr(x) = �↵,�,⇡(⌘(x))

�↵,�,⇡ ↵, �, ⇡

Classification via Class-Probabilities

⇡

⇡

10 / 86

Talk summary

Can we learn a good classifier from corrupted samples?

Yes, if we make assumptions on:

the corruption process

(optionally) the true distribution

11 / 86

Talk summary

Can we learn a good classifier from corrupted samples?

Yes, if we make assumptions on:

the corruption process

(optionally) the true distribution

12 / 86

Talk summary

Can we learn a good classifier from corrupted samples?

Yes, if we make assumptions on:

the corruption process

(optionally) the true distribution

13 / 86

Solution strategy

What we do:

1 write down the distribution we want to observe samples from

2 compare to distribution we actually observe samples from

3 agree upon measure of performance

4 figure out how to correct for discrepancy between (1) and (2)

5

14 / 86

Solution strategy

What we do:

1 write down the distribution we want to observe samples from

2 compare to distribution we actually observe samples from

3 agree upon measure of performance

4 figure out how to correct for discrepancy between (1) and (2)

5

15 / 86

Solution sneak peek

What we suggest:

1 treat corrupted labels as if they were uncorrupted

2 train class-probability estimator (e.g. logistic regression)

3 threshold predictions appropriately

16 / 86

Comment: why not be unhinged?

Precursor to unhinged learning work for label noise

Here, we consider a broader class of corruptions

some results similar in spirit to “noise immunity”

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

�2 �1 0 1 2

�5

0

5

10

v

` 1
(v

)

⇢ = 0
⇢ = 0.2
⇢ = 0.4

Figure 4: Noise-corrected versions of hinge loss, `1(v) = max(0, 1 � v). Best viewed in colour.

rate increases, the effect is to slightly unhinge the original loss, by removing its flat portion8. Thus, if we
knew the noise rate ⇢, we could use these slightly unhinged losses to learn.

Of course, in general we do not know the noise rate. Further, the slightly unhinged losses are non-convex.
So, in order to be robust to an arbitrary noise rate ⇢, we can completely unhinge the loss, yielding

`unh
1 (v) = 1 � v and `unh

�1 (v) = 1 + v.

E.2 Relation to centroid classifiers

As established in §6.1, the optimal unhinged classifier (Equation 9) is equivalent to a centroid classifier,
where one replaces the positive and negative classes by their centroids, and performs classification based
on the distance of an instance to the two centroids. Such a classifier has been proposed as a prototypical
example of a simple kernel-based classifier [Schölkopf and Smola, 2002, Section 1.2], [Shawe-Taylor and
Cristianini, 2004, Section 5.1] Balcan et al. [2008, Definition 4] considers such classification rules using
general similarity functions in place of kernels corresponding to an RKHS.

The optimal unhinged classifier is also closely related to the Rocchio classifier in information retrieval [Man-
ning et al., 2008, pg. 181], and the nearest centroid classifier in computational genomics [Tibshirani et al.,
2002]. The optimal kernelised scorer for these approaches is [Doloc-Mihu et al., 2003]

s⇤ : x 7!
✓

E
X⇠P

[k(X, x)] � E
X⇠Q

[k(X, x)]

◆
,

i.e. it does not weight each of the kernel means.

E.3 Relation to kernel density estimation

When working with an RKHS with a translation invariant kernel9, the optimal unhinged scorer (Equation 9)
can be interpreted as follows: perform kernel density estimation on the positive and negative classes, and
then classify instances according to Bayes’ rule. For example, with a Gaussian RBF kernel, the classifier is
equivalent to using a Gaussian kernel to compute density estimates of P, Q, and using these to classify. This
is known as a kernel classification rule [Devroye et al., 1996, Chapter 10].

This perspective suggests that in computing s⇤unh,�, we may also estimate the corrupted class-probability

function. In particular, observe that if we compute ⇡
1�⇡ ·

E
X⇠P

[k(X,x)]

E
X⇠Q

[k(X,x)] , similar to the Nadaraya-Watson estimator

8Another interesting observation is that these noise-corrected losses are negatively unbounded – that is, minimising
hinge loss on D is equivalent to minimising a negatively unbounded loss on D. This is another justification for studying
negatively unbounded losses.

9For a general (not necessarily translation invariant) kernel, this is known as a potential function rule [Devroye et al.,
1996, §10.3]. The use of “potential” here is distinct from that of a “convex potential”.

17

17 / 86

Binary classification and
class-probability estimation

18 / 86

Learning from binary labels: distributions

Fix instance space X (e.g. RN)

Underlying distribution D over X×{±1}

Constituent components of D:

(P(x),Q(x),π) = (P[X = x|Y = 1],P[X = x|Y =−1],P[Y = 1])

(M(x),η(x)) = (P[X = x],P[Y = 1|X = x])

19 / 86

Learning from binary labels: distributions

Fix instance space X (e.g. RN)

Underlying distribution D over X×{±1}

Constituent components of D:

(P(x),Q(x),π) = (P[X = x|Y = 1],P[X = x|Y =−1],P[Y = 1])
(M(x),η(x)) = (P[X = x],P[Y = 1|X = x])

20 / 86

Learning from binary labels: example

21 / 86

Class-probability estimation

Classification: estimate sign(η(x)− 1
2)

Bayes-optimal decision boundary

returned by e.g. SVM with universal kernel

Class-probability estimation: estimate φ ◦η for invertible φ

e.g. logistic regression: φ : z 7→ 1
1+e−z

e.g. AdaBoost: φ : z 7→ 1
1+e−2z

Class-probability estimation useful when going beyond 0-1 error

22 / 86

Class-probability estimation

Classification: estimate sign(η(x)− 1
2)

Bayes-optimal decision boundary

returned by e.g. SVM with universal kernel

Class-probability estimation: estimate φ ◦η for invertible φ

e.g. logistic regression: φ : z 7→ 1
1+e−z

e.g. AdaBoost: φ : z 7→ 1
1+e−2z

Class-probability estimation useful when going beyond 0-1 error

23 / 86

Classification performance measures
General classification performance measure expressible as
(Narasimhan et al., 2014):

Ψ(FNRD(f),FPRD(f),π)

where

FNRD(f) = PX∼P(f (X) =−1)

FPRD(f) = PX∼Q(f (X) = 1)

Examples:

0-1 error→Ψ : (u,v,p)→ p ·u+(1−p) · v

Balanced error→Ψ : (u,v,p)→ (u+ v)/2

F-score→Ψ : (u,v,p)→ 2·p·(1−u)
p+p·(1−u)+(1−p)·v

24 / 86

Classification performance measures
General classification performance measure expressible as
(Narasimhan et al., 2014):

Ψ(FNRD(f),FPRD(f),π)

where

FNRD(f) = PX∼P(f (X) =−1)

FPRD(f) = PX∼Q(f (X) = 1)

Examples:

0-1 error→Ψ : (u,v,p)→ p ·u+(1−p) · v

Balanced error→Ψ : (u,v,p)→ (u+ v)/2

F-score→Ψ : (u,v,p)→ 2·p·(1−u)
p+p·(1−u)+(1−p)·v

25 / 86

Class-probabilities and classification

Most “reasonable” performance measures Ψ optimised by

f ∗ : x 7→ sign(η(x)− t)

0-1 error→ t = 1
2

Balanced error→ t = π

F-score→ optimal t depends on D

I (Lipton et al., 2014, Koyejo et al., 2014)

Can optimise such Ψ using a class-probability estimator

26 / 86

Class-probabilities and classification

Most “reasonable” performance measures Ψ optimised by

f ∗ : x 7→ sign(η(x)− t)

0-1 error→ t = 1
2

Balanced error→ t = π

F-score→ optimal t depends on D

I (Lipton et al., 2014, Koyejo et al., 2014)

Can optimise such Ψ using a class-probability estimator

27 / 86

Optimising performance measures

Simple algorithm to optimise performance measure Ψ:

compute class-probability estimates η̂ (e.g. by logistic regression)

tune threshold t̂ to optimise Ψ on validation set

return classifier
f̂ : x 7→ sign(η̂(x)− t̂)

Resulting classifier f̂ is consistent (Narasimhan et al., 2014)

surrogate regret bounds also exist (Kotlowski & Dembczynski, 2015)

28 / 86

Assumed corruption model

29 / 86

Learning from binary labels

nature learner
S∼ Dn

nature corruptor learner
S∼ Dn S∼ Dn

Samples from clean distribution D = (P,Q,π)

corrupted distribution
D = (P,Q,π), where

P = (1−α) ·P+α ·Q
Q = β ·P+(1−β) ·Q

and π is arbitrary
α,β are noise rates

mutually contaminated distributions (Scott et al., 2013)

Goal: good classification wrt distribution D
30 / 86

Learning from corrupted binary labels

nature corruptor learner
S∼ Dn S∼ Dn

Samples from corrupted distribution D = (P,Q,π)

, where

P = (1−α) ·P+α ·Q

Q = β ·P+(1−β) ·Q
and π is arbitrary

α,β are noise rates

mutually contaminated distributions (Scott et al., 2013)

Goal: good classification wrt (unobserved) distribution D
31 / 86

Learning from corrupted binary labels

nature corruptor learner
S∼ Dn S∼ Dn

Samples from corrupted distribution D = (P,Q,π), where

P = (1−α) ·P+α ·Q

Q = β ·P+(1−β) ·Q
and π is arbitrary

α,β are noise rates

mutually contaminated distributions (Scott et al., 2013)

Goal: good classification wrt (unobserved) distribution D
32 / 86

Special case: label noise

Labels flipped with probability
ρ+,ρ−

π = (1−ρ+−ρ−) ·π +ρ++ρ−

α = π−1 · (1−π) ·ρ−

β = (1−π)−1 ·π ·ρ+

+	

+	

+	

+	

-­‐	

-­‐	

-­‐	

-­‐	

33 / 86

Special case: PU learning

Observe M instead of Q

π = arbitrary

P = 1 ·P+0 ·Q

Q = M
= π ·P+(1−π) ·Q

+	

+	

?	

?	

?	

?	

?	
 ?	

34 / 86

Caution: two faces of PU learning

Can also cast PU learning as specific case of asymmetric label
noise (Elkan and Noto, 2008)

+’ves flipped with censoring probability c

-’ves flipped with probability 0

“Case-controlled” versus “censoring” versions of the problem

35 / 86

Corrupted class-probabilities

Structure of corrupted class-probabilities underpins analysis

Proposition
For any D,D,

η(x) = φα,β ,π(η(x))

where φα,β ,π is strictly monotone for fixed α,β ,π .

Follows from Bayes’ rule:

η(x)
1−η(x)

=
π

1−π
· P(x)

Q(x)

=
π

1−π
·
(1−α) · P(x)

Q(x) +α

β · P(x)
Q(x) +(1−β)

.

36 / 86

Corrupted class-probabilities

Structure of corrupted class-probabilities underpins analysis

Proposition
For any D,D,

η(x) = φα,β ,π(η(x))

where φα,β ,π is strictly monotone for fixed α,β ,π .

Follows from Bayes’ rule:

η(x)
1−η(x)

=
π

1−π
· P(x)

Q(x)

=
π

1−π
·
(1−α) · P(x)

Q(x) +α

β · P(x)
Q(x) +(1−β)

.

37 / 86

Corrupted class-probabilities

Structure of corrupted class-probabilities underpins analysis

Proposition
For any D,D,

η(x) = φα,β ,π(η(x))

where φα,β ,π is strictly monotone for fixed α,β ,π .

Follows from Bayes’ rule:

η(x)
1−η(x)

=
π

1−π
· P(x)

Q(x)

=
π

1−π
·
(1−α) · P(x)

Q(x) +α

β · P(x)
Q(x) +(1−β)

.

38 / 86

Corrupted class-probabilities

Structure of corrupted class-probabilities underpins analysis

Proposition
For any D,D,

η(x) = φα,β ,π(η(x))

where φα,β ,π is strictly monotone for fixed α,β ,π .

Follows from Bayes’ rule:

η(x)
1−η(x)

=
π

1−π
· P(x)

Q(x)
=

π

1−π
·
(1−α) · P(x)

Q(x) +α

β · P(x)
Q(x) +(1−β)

.

39 / 86

Corrupted class-probabilities: special cases

Label noise PU learning

η(x) = (1−ρ+−ρ−) ·η(x)+ρ− η(x) = π·η(x)
π·η(x)+(1−π)·π

ρ+,ρ− unknown π unknown

(Natarajan et al., 2013) (Ward et al., 2009)

40 / 86

Corrupted class-probabilities: comments

Form of η implies suitable choice of function class

e.g. if η : x 7→ 1
1+e−s(x) , then neural network is well-specified for η

if you can’t be unhinged, be neurotic

Label noise PU learning

η(x) = a · 1
1+e−s(x) +b η(x) = 1

a+b·e−s(x)

41 / 86

Roadmap

Exploit monotone relationship between η and η

nature corruptor class-prob
estimator

classifier

nature corruptor class-prob
estimator

classifier

D D η̂

?

Kernel logistic regression

42 / 86

Roadmap

Exploit monotone relationship between η and η

nature corruptor class-prob
estimator

classifier

nature corruptor class-prob
estimator

classifier
D D η̂

?
Kernel logistic regression

43 / 86

Classification with noise rates

44 / 86

Recap: class-probabilities and classification

Most “reasonable” performance measures optimised by

f ∗ : x 7→ sign(η(x)− t)

0-1 error→ t = 1
2

Balanced error→ t = π

F-score→ optimal t depends on D

I (Lipton et al., 2014, Koyejo et al., 2014)

We can relate this to thresholding of η!

45 / 86

Recap: class-probabilities and classification

Most “reasonable” performance measures optimised by

f ∗ : x 7→ sign(η(x)− t)

0-1 error→ t = 1
2

Balanced error→ t = π

F-score→ optimal t depends on D

I (Lipton et al., 2014, Koyejo et al., 2014)

We can relate this to thresholding of η!

46 / 86

Corrupted class-probabilities and classification

By monotone relationship,

η(x)> t ⇐⇒ η(x)> φα,β ,π(t).

Threshold η at φα,β ,π(t)→ optimal classification on D

47 / 86

Optimal classifiers for 0-1 error: special cases

Label noise PU learning

sign
(

η(x)− 1−ρ++ρ−
2

)
sign

(
η(x)− π

π+2·(1−π)·π

)

Thresholding at 1
2 is in general not optimal

using standard binary classifier will fail

but changing the threshold overcomes this

48 / 86

Optimising performance measures from
corrupted samples

Simple algorithm to optimise performance measure Ψ:

compute corrupted class-probability estimates η̂ (e.g. by logistic
regression)

tune threshold t̂ to optimise Ψ on validation set

return classifier
f̂ : x 7→ sign(η̂(x)− t̂)

Can derive surrogate regret bounds as before

49 / 86

Story so far
Classification scheme requires:

η

→ class-probability estimation

t

→ constant, or using Ψ

α,β ,π

→ can we estimate these?

noise
oracle

nature corruptor class-prob
estimator

classifier

noise
estimator

nature corruptor class-prob
estimator

classifier

D D η̂

α̂, β̂ , π̂

?

Kernel logistic regression

sign(η̂(x)−φ
α̂,β̂ ,π̂

(t))

50 / 86

Story so far
Classification scheme requires:

η → class-probability estimation

t

→ constant, or using Ψ

α,β ,π

→ can we estimate these?

noise
oracle

nature corruptor class-prob
estimator

classifier

noise
estimator

nature corruptor class-prob
estimator

classifier

D D η̂

α̂, β̂ , π̂

?

Kernel logistic regression

sign(η̂(x)−φ
α̂,β̂ ,π̂

(t))

51 / 86

Story so far
Classification scheme requires:

η → class-probability estimation

t→ constant, or using Ψ

α,β ,π

→ can we estimate these?

noise
oracle

nature corruptor class-prob
estimator

classifier

noise
estimator

nature corruptor class-prob
estimator

classifier

D D η̂

α̂, β̂ , π̂

?

Kernel logistic regression

sign(η̂(x)−φ
α̂,β̂ ,π̂

(t))

52 / 86

Story so far
Classification scheme requires:

η → class-probability estimation

t→ constant, or using Ψ

α,β ,π → can we estimate these?

noise
oracle

nature corruptor class-prob
estimator

classifier

noise
estimator

nature corruptor class-prob
estimator

classifier
D D η̂

α̂, β̂ , π̂

?

Kernel logistic regression

sign(η̂(x)−φ
α̂,β̂ ,π̂

(t))

53 / 86

Estimating noise rates: some bad news

π strongly non-identifiable!

π allowed to be arbitrary (e.g. PU learning)

α,β non-identifiable without assumptions (Scott et al., 2013)

Can we estimate α,β under assumptions?

54 / 86

Estimating noise rates: some bad news

π strongly non-identifiable!

π allowed to be arbitrary (e.g. PU learning)

α,β non-identifiable without assumptions (Scott et al., 2013)

Can we estimate α,β under assumptions?

55 / 86

Weak separability assumption

Assume that D is “weakly separable”:

min
x∈X

η(x) = 0

max
x∈X

η(x) = 1

i.e. ∃ deterministically +’ve and -’ve instances

weaker than full separability

Assumed range of η constrains observed range of η!

56 / 86

Weak separability assumption

Assume that D is “weakly separable”:

min
x∈X

η(x) = 0

max
x∈X

η(x) = 1

i.e. ∃ deterministically +’ve and -’ve instances

weaker than full separability

Assumed range of η constrains observed range of η!

57 / 86

Estimating noise rates

Proposition
Pick any weakly separable D. Then, for any D,

α =
ηmin · (ηmax−π)

π · (ηmax−ηmin)
and β =

(1−ηmax) · (π−ηmin)

(1−π) · (ηmax−ηmin)

where
ηmin = min

x∈X
η(x)

ηmax = max
x∈X

η(x)

α,β can be estimated from corrupted data alone

58 / 86

Estimating noise rates: special cases

Label noise PU learning

ρ+ = 1−ηmax

ρ− = ηmin

π =
π−ηmin

ηmax−ηmin

α = 0
β = π

=
1−ηmax

ηmax
· π

1−π

(Elkan and Noto, 2008),
(Liu and Tao, 2014)

In these cases, π can be estimated as well

59 / 86

Estimating noise rates: comments

Given estimates η̂ , can use plugin versions of ηmin,ηmax

Estimating order statistics not ideal

estimates of e.g. π will be sensitive to errors in ηmin,ηmax

under stronger assumptions on D, more well-behaved estimators
possible, e.g.

ρ+ = E
X∼P

[η(X)]

60 / 86

Story so far

Optimal classification in general requires α,β ,π

when does φα,β ,π(t) not depend on α,β ,π?

noise
estimator

nature corruptor class-prob
estimator

classifier

noise
estimator

nature corruptor class-prob
estimator

classifier

D D η̂

η̂
α̂, β̂ , π̂

Range of η̂

η̂
α̂, β̂ , π̂

Range of η̂

Kernel logistic regression

sign(η̂(x)−φ
α̂,β̂ ,π̂

(t))

61 / 86

Story so far

Optimal classification in general requires α,β ,π

when does φα,β ,π(t) not depend on α,β ,π?

noise
estimator

nature corruptor class-prob
estimator

classifier

noise
estimator

nature corruptor class-prob
estimator

classifier
D D η̂

η̂
α̂, β̂ , π̂

Range of η̂

η̂
α̂, β̂ , π̂

Range of η̂

Kernel logistic regression

sign(η̂(x)−φ
α̂,β̂ ,π̂

(t))

62 / 86

Classification without noise rates

63 / 86

Balanced error (BER) of classifier

Balanced error (BER) of a classifier f : X→{±1} is:

BERD(f) =
FPRD(f)+FNRD(f)

2

for false positive and negative rates FPRD(f),FNRD(f)

average classification performance on each class

favoured when classes are imbalanced

64 / 86

BER “immunity” under corruption
Proposition (c.f. (Zhang and Lee, 2008))
For any D,D, and any classifier f : X→{±1},

BERD(f) = (1−α−β) ·BERD(f)+
α +β

2

Minimising corrupted BER minimises clean BER!

can ignore corruption process

Trivially, we also have

regretDBER(f) = (1−α−β)−1 · regretDBER(f).

i.e. good corrupted BER =⇒ good clean BER

65 / 86

BER “immunity” under corruption
Proposition (c.f. (Zhang and Lee, 2008))
For any D,D, and any classifier f : X→{±1},

BERD(f) = (1−α−β) ·BERD(f)+
α +β

2

Minimising corrupted BER minimises clean BER!

can ignore corruption process

Trivially, we also have

regretDBER(f) = (1−α−β)−1 · regretDBER(f).

i.e. good corrupted BER =⇒ good clean BER

66 / 86

BER “immunity” under corruption
Proposition (c.f. (Zhang and Lee, 2008))
For any D,D, and any classifier f : X→{±1},

BERD(f) = (1−α−β) ·BERD(f)+
α +β

2

Minimising corrupted BER minimises clean BER!

can ignore corruption process

Trivially, we also have

regretDBER(f) = (1−α−β)−1 · regretDBER(f).

i.e. good corrupted BER =⇒ good clean BER

67 / 86

BER “immunity” & class-probability estimation

Can optimise corrupted BER via class-probability estimation:

compute corrupted class-probability estimates η̂

threshold η̂ around corrupted base rate π

For strongly proper composite `, and scorer s : X→ R,

regretDBER(fs)≤ C`,π ·
√

regretD` (s).

i.e. can make regretDBER(f)→ 0 by class-probability estimation

68 / 86

BER “immunity” & class-probability estimation

Can optimise corrupted BER via class-probability estimation:

compute corrupted class-probability estimates η̂

threshold η̂ around corrupted base rate π

For strongly proper composite `, and scorer s : X→ R,

regretDBER(fs)≤ C`,π ·
√

regretD` (s).

i.e. can make regretDBER(f)→ 0 by class-probability estimation

69 / 86

BER “immunity” under corruption: proof

From (Scott et al., 2013),

[
FPRD(f) FNRD(f)

]T
=
[
FPRD(f) FNRD(f)

]T ·
[

1−β −α

−β 1−α

]

+
[
β α

]T
,

and
[

1
1

]
is an eigenvector of

[
1−β −α

−β 1−α

]

70 / 86

BER “immunity” under corruption: proof

From (Scott et al., 2013),

[
FPRD(f) FNRD(f)

]T
=
[
FPRD(f) FNRD(f)

]T ·
[

1−β −α

−β 1−α

]

+
[
β α

]T
,

and
[

1
1

]
is an eigenvector of

[
1−β −α

−β 1−α

]

71 / 86

BER “immunity” under corruption: comments

Results do not rely on weak separability assumption for D

Regret relation does not rely on model being well-specified

close to best corrupted BER in class H→ close to best clean BER in
class H

72 / 86

Corollary: AUC “immunity” under corruption
Area under ROC curve (AUC) of a scorer s : X→ R:

AUCD(s) = E
X∼P,X′∼Q

[
Js(X)> s(X′)K+

1
2
Js(X) = s(X′)K

]

probability of random +’ve scoring higher than random -’ve

Corollary
For any D,D, and scorer s : X→ R,

AUCD(s) = (1−α−β) ·AUCD(s)+
α +β

2

Pairwise ranking→ can ignore corruption process

73 / 86

Corollary: AUC “immunity” under corruption
Area under ROC curve (AUC) of a scorer s : X→ R:

AUCD(s) = E
X∼P,X′∼Q

[
Js(X)> s(X′)K+

1
2
Js(X) = s(X′)K

]

probability of random +’ve scoring higher than random -’ve

Corollary
For any D,D, and scorer s : X→ R,

AUCD(s) = (1−α−β) ·AUCD(s)+
α +β

2

Pairwise ranking→ can ignore corruption process

74 / 86

Are other measures “immune”?

BER is only (non-trivial) performance measure for which:

corrupted risk = affine transform of clean risk

I because of eigenvector interpretation

corrupted threshold is independent of α,β ,π

I because of nature of φα,β ,π

Other performance measures→ need (one of) α,β ,π

75 / 86

Experiments

76 / 86

Experimental setup
Injected label noise on UCI datasets

Estimate corrupted class-probabilities via neural network

well-specified if D linearly separable:

η(x) = σ(〈w,x〉) =⇒ η(x) = a ·σ(〈w,x〉)+b

Evaluate:

BER performance on clean test set

I corrupted data used for training and validation

0-1 performance on clean test set

reliability of noise estimates

77 / 86

Experimental results: BER immunity
Generally, low observed degradation in BER

Dataset Noise 1 - AUC (%) BER (%)

segment
None 0.00 ± 0.00 0.00 ± 0.00
(ρ+,ρ−) = (0.1,0.0) 0.00 ± 0.00 0.01 ± 0.00
(ρ+,ρ−) = (0.1,0.2) 0.02 ± 0.01 0.90 ± 0.08
(ρ+,ρ−) = (0.2,0.4) 0.03 ± 0.01 3.24 ± 0.20

spambase
None 2.49 ± 0.00 6.93 ± 0.00
(ρ+,ρ−) = (0.1,0.0) 2.67 ± 0.02 7.10 ± 0.03
(ρ+,ρ−) = (0.1,0.2) 3.01 ± 0.03 7.66 ± 0.05
(ρ+,ρ−) = (0.2,0.4) 4.91 ± 0.09 10.52 ± 0.13

mnist
None 0.92 ± 0.00 3.63 ± 0.00
(ρ+,ρ−) = (0.1,0.0) 0.95 ± 0.01 3.56 ± 0.01
(ρ+,ρ−) = (0.1,0.2) 0.97 ± 0.01 3.63 ± 0.02
(ρ+,ρ−) = (0.2,0.4) 1.17 ± 0.02 4.06 ± 0.03

78 / 86

Experimental results: 0-1 error
0-1 error with estimated noise rates ∼ using oracle noise rates

Dataset Noise ERRest(%) ERRoracle(%)

segment
None 0.00 ± 0.00 0.00 ± 0.00
(ρ+,ρ−) = (0.1,0.0) 0.01 ± 0.00 0.01 ± 0.00
(ρ+,ρ−) = (0.1,0.2) 0.31 ± 0.05 0.30 ± 0.05
(ρ+,ρ−) = (0.2,0.4) 0.31 ± 0.06 0.27 ± 0.06

spambase
None 6.52 ± 0.00 6.52 ± 0.00
(ρ+,ρ−) = (0.1,0.0) 6.88 ± 0.03 6.89 ± 0.03
(ρ+,ρ−) = (0.1,0.2) 7.51 ± 0.05 7.48 ± 0.05
(ρ+,ρ−) = (0.2,0.4) 10.82 ± 0.31 10.26 ± 0.12

mnist
None 3.63 ± 0.00 3.63 ± 0.00
(ρ+,ρ−) = (0.1,0.0) 3.55 ± 0.01 3.55 ± 0.01
(ρ+,ρ−) = (0.1,0.2) 3.62 ± 0.02 3.62 ± 0.02
(ρ+,ρ−) = (0.2,0.4) 4.06 ± 0.03 4.05 ± 0.03

79 / 86

Experimental results: noise rates
Estimated noise rates are generally reliable

0 0.1 0.2 0.3 0.4 0.49

−0.3

−0.2

−0.1

0

0.1

Ground−truth noise

B
ia

s
 o

f
E

s
ti
m

a
te

segment

Mean
Median

0 0.1 0.2 0.3 0.4 0.49

−0.2

−0.125

−0.05

0.025

0.1

Ground−truth noise

B
ia

s
 o

f
E

s
ti
m

a
te

spambase

Mean
Median

0 0.1 0.2 0.3 0.4 0.49

−0.04

−0.025

−0.01

0.005

0.02

Ground−truth noise

B
ia

s
 o

f
E

s
ti
m

a
te

mnist

Mean

Median

80 / 86

Conclusion

81 / 86

Learning from corrupted binary labels

Monotone relationship η(x) = φα,β ,π(η(x)) facilitates:

noise
estimator

nature corruptor class-prob
estimator

classifier
D D η̂

η̂
α̂, β̂ , π̂

Range of η̂

Omit for BER

Kernel logistic regression

sign(η̂(x)−φ
α̂,β̂ ,π̂

(t))

82 / 86

Future work - I

Better noise estimators?

c.f. (Elkan and Noto, 2008) when D separable

More general noise estimators?

e.g. learning from partial labels, multi-class corruption, ...

see formulation of (van Rooyen & Williamson, 2015)

83 / 86

Future work - II

Alternatives to neural network for class-probabilities?

choice of being unhinged versus neurotic

for linearly separable D, Isotron (Kalai and Sastry, 2009)

Fusion with “loss transfer” (Natarajan et al., 2013) approach

better for misspecified models

assumes noise rates known

84 / 86

Future work - III

Applications:

Bike crashes Implicit feedback

?"

Eels’ habitats

85 / 86

Thanks!

86 / 86

	Binary classification and class-probability estimation
	Assumed corruption model
	Classification with noise rates
	Classification without noise rates
	Experiments
	Conclusion

