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Learning from noisy labels
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Learning from positive and unlabelled data




Learning from binary labels

Goal: good classification wrt distribution D

learner

/86



Learning from corrupted labels

Goal: good classification wrt (unobserved) distribution D
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Learning from corrupted labels: applications

Learnmg from noisy annotators

Implicit feedback
recommendatlon
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Talk summary

Can we learn a good classifier from corrupted samples?
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Talk summary

Can we learn a good classifier from corrupted samples?

Yes, if we make assumptions on:
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Talk summary

Can we learn a good classifier from corrupted samples?

Yes, if we make assumptions on:

@ the corruption process

@ (optionally) the true distribution
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Solution strategy

What we do:

@ write down the distribution we want to observe samples from
@ compare to distribution we actually observe samples from
@ agree upon measure of performance

© figure out how to correct for discrepancy between (1) and (2)
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Solution strategy

What we do:

@ write down the distribution we want to observe samples from
@ compare to distribution we actually observe samples from
@ agree upon measure of performance

© figure out how to correct for discrepancy between (1) and (2)
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Solution sneak peek

What we suggest:

@ treat corrupted labels as if they were uncorrupted

@ train class-probability estimator (e.g. logistic regression)

=1

© threshold predictions appropriately
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Comment: why not be unhinged?

Precursor to unhinged learning work for label noise

Here, we consider a broader class of corruptions

@ some results similar in spirit to “noise immunity”
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Binary classification and
class-probability estimation



Learning from binary labels: distributions

Fix instance space X (e.g. RY)
Underlying distribution D over X x {£1}

Constituent components of D:

(P(x),0(x),7) = (BX = x|Y = 1],P[X = x|Y = —1],P[Y = 1])
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Learning from binary labels: distributions

Fix instance space X (e.g. RY)
Underlying distribution D over X x {£1}

Constituent components of D:

(P(x),0(x),7) = (BX = x|Y = 1],P[X = x|Y = —1],P[Y = 1])
(M(x),1(x)) = (PX=ux],PIY = 1|X = x])
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Learning from binary labels: example

= | DEPRE &
(P,Q) =

3 2 -1

MEe EE
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Class-probability estimation

Classification: estimate sign(n(x) — 1)

@ Bayes-optimal decision boundary

@ returned by e.g. SVM with universal kernel
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Class-probability estimation

Classification: estimate sign(n(x) — 1)

@ Bayes-optimal decision boundary

@ returned by e.g. SVM with universal kernel

Class-probability estimation: estimate ¢ o for invertible ¢

@ e.g. logistic regression: ¢ : z+— H( ;

@ e.g. AdaBoost: ¢: Zr—>l+€

Class-probability estimation useful when going beyond 0-1 error
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Classification performance measures
General classification performance measure expressible as
(Narasimhan et al., 2014):

W(ENRP(f), FPRP (f), )
where

FNRP(f) = Pxp(f(X) = —1)
FPR(f) = Pxo(f(X) = 1)
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Classification performance measures
General classification performance measure expressible as
(Narasimhan et al., 2014):

W(ENRP(f), FPRP (f), )
where

FNRP(f) = Pxp(f(X) = —1)
FPR(f) = Pxo(f(X) = 1)

Examples:
@ 0-1error - Y¥: (u,v,p) >p-u+(l—p)-v
@ Balanced error — W¥: (u,v,p) = (u+v)/2

2-p-(1—u)

@ F-score — VW¥: (u,v,p) — P g
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Class-probabilities and classification

Most “reasonable” performance measures VW optimised by

fF x> sign(n(x) —1)
@ O-1error —t=1

@ Balancederror —wt=nm

@ F-score — optimal r depends on D
» (Lipton et al., 2014, Koyejo et al., 2014)
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Class-probabilities and classification

Most “reasonable” performance measures VW optimised by

fF x> sign(n(x) —1)
@ O-1error —t=1

@ Balancederror —wt=nm

@ F-score — optimal r depends on D
» (Lipton et al., 2014, Koyejo et al., 2014)

Can optimise such ¥ using a class-probability estimator
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Optimising performance measures

Simple algorithm to optimise performance measure V:

@ compute class-probability estimates 1] (e.g. by logistic regression)
@ tune threshold 7 to optimise ¥ on validation set

@ return classifier
fix— sign(f) (x) —7)

Resulting classifier f is consistent (Narasimhan et al., 2014)

@ surrogate regret bounds also exist (Kotlowski & Dembczynski, 2015)
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Assumed corruption model
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Learning from binary labels

S~ D"
nature learner

Samples from clean distribution D = (P, Q, )

Goal: good classification wrt distribution D

30/86



Learning from corrupted binary labels

S~p' & VS~ D
nature \ corruptor learner
L 4

Goal: good classification wrt (unobserved) distribution D
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Learning from corrupted binary labels

S~p' & VS~ D
nature \ corruptor learner
L 4

Samples from corrupted distribution D = (P, Q, ), where

P=(1-a)-P+a-Q
0=p-P+(1-P)-Q

and 7 is arbitrary

@ o,f are noise rates

@ mutually contaminated distributions (Scott et al., 2013)

Goal: good classification wrt (unobserved) distribution D
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Special case: label noise

Labels flipped with probability -
p+,P-
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Special case: PU learning

Observe M instead of O

7 = arbitrary

P=1-P+0-0Q

0= : 2 Dol
R ?

=n-P+(1—-m)-Q
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Caution: two faces of PU learning

Can also cast PU learning as specific case of asymmetric label
noise (Elkan and Noto, 2008)

@ +'ves flipped with censoring probability ¢

@ -'ves flipped with probability 0

“Case-controlled” versus “censoring” versions of the problem
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Corrupted class-probabilities

Structure of corrupted class-probabilities underpins analysis
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Corrupted class-probabilities

Structure of corrupted class-probabilities underpins analysis

Proposition
For any D, D,
n(x) = ‘Poc,B,n:(n (x))

where ¢, g 1 is strictly monotone for fixed a, 3, 7.
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Corrupted class-probabilities

Structure of corrupted class-probabilities underpins analysis

Proposition
For any D, D,

1M(x) = Pap,z(1(x))

where ¢ g 5 is strictly monotone for fixed o, 3, 7.

Follows from Bayes’ rule:

1(x) T
-1k 1-7

X)

Il o
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Corrupted class-probabilities

Structure of corrupted class-probabilities underpins analysis

Proposition
For any D, D,

1M(x) = Pap,z(1(x))

where ¢ g 5 is strictly monotone for fixed o, 3, 7.

Follows from Bayes’ rule:

LI g (1-0) gyta

P
ix) 1-7 Q(x) 1-% g.PW (q_pgy

Sk
S
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Corrupted class-probabilities: special cases

Label noise

Nx)=0-ps—p-)-n) +p-
P+, pP— unknown

(Natarajan et al., 2013)

PU learning

7 unknown

(Ward et al., 2009)

40/86



Corrupted class-probabilities: comments

Form of 1 implies suitable choice of function class

e.g. if n: x— —L, then neural network is well-specified for 7

I4e—slx
@ if you can’t be unhinged, be neurotic

Label noise PU learning

N ! N
Nx)=a 5 +0 M) = —=m
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Roadmap

D ! V" D | class-prob »
nature ! corruptor ——| ©45SP classifier
1 ) estimator

Kernel logistic regression
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Roadmap

Exploit monotone relationship between n and 1

___________

D ! ' D | class-prob | 7 »
nature ! corruptor | ¢SSP classifier P4
1 ] estimator .

Kernel logistic regression
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Classification with noise rates
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Recap: class-probabilities and classification

Most “reasonable” performance measures optimised by

fF x> sign(n(x) —1)
@ O-1error —t=1

@ Balancederror —wt=nm

@ F-score — optimal r depends on D
» (Lipton et al., 2014, Koyejo et al., 2014)
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Recap: class-probabilities and classification

Most “reasonable” performance measures optimised by

fF x> sign(n(x) —1)
@ O-1error —t=1

@ Balancederror —wt=nm

@ F-score — optimal r depends on D
» (Lipton et al., 2014, Koyejo et al., 2014)

We can relate this to thresholding of 7!
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Corrupted class-probabilities and classification

By monotone relationship,

n(x) >t <= 1N(x) > 0qp (1)

Threshold 7 at ¢, g ,(t) — optimal classification on D

47/86



Optimal classifiers for 0-1 error: special cases

Label noise PU learning

sign (71(x) — 2572 ) sign (1) = 537777

Thresholding at % is in general not optimal

@ using standard binary classifier will fail

@ but changing the threshold overcomes this
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Optimising performance measures from
corrupted samples

Simple algorithm to optimise performance measure V:

@ compute corrupted class-probability estimates ﬁ (e.g. by logistic
regression)

@ tune threshold 7 to optimise ¥ on validation set

@ return classifier
x> sign(n(x) —1)

Can derive surrogate regret bounds as before
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Story so far
Classification scheme requires:

@1
® 1

° o f,x

noise
oracle

___________

D ! D class-prob 1 i
nature 1 corruptor — . P classifier
1 ) estimator

N

sign(

=»

(x) = d’a/jﬁ(t))
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Story so far
Classification scheme requires:

@ 7 — class-probability estimation
° ¢

° o f,x

noise
oracle

Y

___________

D ! ) class-prob 1 i
nature | corruptor ——— . P classifier
h ) estimator

=»

sign( (1)~ 05 5(0)

Kernel logistic regression
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Story so far
Classification scheme requires:

@ 7 — class-probability estimation
@  — constant, or using ¥

° o f,x

noise
oracle

Y

___________

D ! ) class-prob 1 i
nature | corruptor ——— . P classifier
h ) estimator

=»

sign( (1)~ 05 5(0)

Kernel logistic regression
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Story so far
Classification scheme requires:

@ 7 — class-probability estimation
@  — constant, or using ¥

@ «,f3,m — can we estimate these?

noise
estimator

D
nature ]
b

Kernel logistic regression
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Estimating noise rates: some bad news

7 strongly non-identifiable!

@ 7 allowed to be arbitrary (e.g. PU learning)

o, B non-identifiable without assumptions (Scott et al., 2013)
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Estimating noise rates: some bad news

7 strongly non-identifiable!

@ 7 allowed to be arbitrary (e.g. PU learning)
o, B non-identifiable without assumptions (Scott et al., 2013)

Can we estimate o, 3 under assumptions?
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Weak separability assumption

Assume that D is “weakly separable”:

min7 (x) =0
=1
max 7 (x)

@ i.e. 3 deterministically +'ve and -'ve instances

@ weaker than full separability
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Weak separability assumption

Assume that D is “weakly separable”:

min7 (x) =0
=1
max 1 (x)

@ i.e. 3 deterministically +'ve and -'ve instances

@ weaker than full separability

Assumed range of 1) constrains observed range of 7!
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Estimating noise rates

Proposition
Pick any weakly separable D. Then, for any D,

MNmin * (rlrnax - ﬁ') (1 - r’max) : (ﬁ' - nmin)
— = and B = —
T (nmax - rlmin) ﬁ (1 - 75) : (nmax - nmin)

o

where
Nmin = Minn (x)
xeX

Nmax = e 1(x)

o, B can be estimated from corrupted data alone

58/86



Estimating noise rates: special cases

Label noise PU learning
P+ =1—Nmax a=0
P— = MNmin B=n=
_ ﬁ-_nmin :1_nmax‘ T
Nmax — MNmin MNmax 1-7

(Elkan and Noto, 2008),
(Liu and Tao, 2014)

In these cases, & can be estimated as well
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Estimating noise rates: comments

Given estimates 1], can use plugin versions of Nmin, Nmax

Estimating order statistics not ideal

@ estimates of e.g. 7 will be sensitive to errors in NMuin, Mmax

@ under stronger assumptions on D, more well-behaved estimators
possible, e.g.

pi=E [n(X)]
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Story so far

Optimal classification in general requires o, 3,7

Range of 7

noise

estimator

=13

(=3
=

£l

D VT b | class-prob | 7 n oA

Kernel logistic regression
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Story so far

Optimal classification in general requires o, B,

@ when does ¢, s () not depend on a, 3, 7?

...........

o = Celasssm_':)alroob ! ign (i (x
! corruptor A n(n o pall
nature . ] i classifier sign( (x) = 9, 5 +(1))

Kernel logistic regression
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Classification without noise rates
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Balanced error (BER) of classifier

Balanced error (BER) of a classifier f: X — {£1} is:

FPRP (f) + FNRP(f)
2

BER?(f) =

for false positive and negative rates FPR?(f), FNR” (f)

@ average classification performance on each class

@ favoured when classes are imbalanced
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BER “immunity” under corruption
Proposition (c.f. (Zhang and Lee, 2008))

For any D, D, and any classifier f: X — {£1},

o+p

BER”(f) = (1 — . — B) - BERP(f) + >
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BER “immunity” under corruption
Proposition (c.f. (Zhang and Lee, 2008))

For any D, D, and any classifier f: X — {£1},

o+ p

BER”(f) = (1 — . — B) - BERP(f) + >

Minimising corrupted BER minimises clean BER!

@ can ignore corruption process
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BER “immunity” under corruption
Proposition (c.f. (Zhang and Lee, 2008))

For any D, D, and any classifier f: X — {£1},

o+ p

BER”(f) = (1 — . — B) - BERP(f) + >

Minimising corrupted BER minimises clean BER!

@ can ignore corruption process

Trivially, we also have

regrethpg (f) = (1 — ot — B) ! - regrethpg (f).

i.e. good corrupted BER — good clean BER
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BER “immunity” & class-probability estimation

Can optimise corrupted BER via class-probability estimation:

@ compute corrupted class-probability estimates 1

@ threshold 7} around corrupted base rate 7
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BER “immunity” & class-probability estimation

Can optimise corrupted BER via class-probability estimation:

@ compute corrupted class-probability estimates 1

@ threshold 7} around corrupted base rate 7

For strongly proper composite ¢, and scorer s: X — R,

regrethR(fs) <Cizr- regret? (s).

i.e. can make regrethr (f) — 0 by class-probability estimation
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BER “immunity” under corruption: proof
From (Scott et al., 2013),

[FPRD(f) FNRb(f)]T:[FPRD(f) FNRD(f)]T'{l_[3 _a}

B 11—«
+[B o,
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BER “immunity” under corruption: proof

From (Scott et al., 2013),

[FPRD(f) FNRb(f)]T:[FPRD(f) FNRD(f)]T'{l__ﬁ[3 _a}

11—«
T
+[B o],
1. . 1-8 -«
and L] is an eigenvector of { B la}
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BER “immunity” under corruption: comments

Results do not rely on weak separability assumption for D

Regret relation does not rely on model being well-specified

@ close to best corrupted BER in class H{ — close to best clean BER in
class H

72/86



Corollary: AUC “immunity” under corruption

Area under ROC curve (AUC) of a scorer s: X — R:

AUCP() = B [15(X) > 0] +55(X) =50)]

@ probability of random +’ve scoring higher than random -’'ve
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Corollary: AUC “immunity” under corruption

Area under ROC curve (AUC) of a scorer s: X — R:

AUCP() = B 1500 > 50T+ 5 X0 =s0)]

@ probability of random +’ve scoring higher than random -’'ve

Corollary
For any D, D, and scorer s: X — R,

il

AUCP(s) = (1 - a— B)-AUC®(s) + —

Pairwise ranking — can ignore corruption process
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Are other measures “immune”?

BER is only (non-trivial) performance measure for which:
@ corrupted risk = affine transform of clean risk
» because of eigenvector interpretation
@ corrupted threshold is independent of a, 8,7

» because of nature of ¢, g »

Other performance measures — need (one of) o, 3,7
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Experiments
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Experimental setup

Injected label noise on UCI datasets

Estimate corrupted class-probabilities via neural network

@ well-specified if D linearly separable:

nx) =o((w,x)) = ) =a-o((w,x)) +b

Evaluate:
@ BER performance on clean test set

» corrupted data used for training and validation
@ 0-1 performance on clean test set

@ reliability of noise estimates
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Experimental results: BER immunity
Generally, low observed degradation in BER

Dataset

Noise

1 - AUC (%)

BER (%)

segment

None

(p+7p—) = (01700)
(P+,Pf) = (01702)
(p+,p-) =(0.2,0.4)

0.00 £ 0.00
0.00 £ 0.00
0.02 £+ 0.01
0.03 +£ 0.01

0.00 £ 0.00
0.01 £0.00
0.90 £ 0.08
3.24 +0.20

spambase

None

(P+,Pf) = (01700)
(p+7p—) = (01702)
(P+,Pf) =(0.2,0.4)

2.49 £ 0.00
2.67 £ 0.02
3.01 £0.03
4.91 +0.09

6.93 =+ 0.00
7.10 £ 0.03
7.66 = 0.05
10.52 + 0.13

mnist

None

(p+7p—) = (01700)
(P+,Pf) = (01702)
(p+,p-) =(0.2,0.4)

0.92 £ 0.00
0.95 £ 0.01
0.97 £+ 0.01
1.17 £ 0.02

3.63 £ 0.00
3.56 £ 0.01
3.63 £ 0.02
4.06 £ 0.03
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Experimental results: 0-1 error
0-1 error with estimated noise rates ~ using oracle noise rates

None 0.00 +0.00 0.00 £ 0.00
segment (p+,p-)=(0.1,0.0) 0.01 £0.00 0.01 +£0.00
(p+,p-)=1(0.1,0.2) 0.31 +£0.05 0.30+0.05
(p+,p-)=1(0.2,0.4) 0.31 £0.06 0.27 + 0.06
None 6.52+0.00 6.52+0.00
spambase (p4,p-)=(0.1,0.0) 6.88+0.03 6.89 + 0.03
(p+,p-)=1(0.1,0.2) 7.514+0.05 7.48+0.05
(p+,p-)=1(0.2,0.4) 10.82 +0.31 10.26 +0.12
None 3.63+0.00 3.63+0.00
mnist (p+,p-) =(0.1,0.0) 3.55 + 0.01 3.55 + 0.01
(p+,p-)=1(0.1,0.2) 3.624+0.02 3.62 +0.02
(p+,p-)=1(0.2,0.4) 4.06+0.03 4.05+0.03
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Experimental results: noise rates

Estimated noise rates are generally reliable

segment spambase
—Mear —Mean
2 0.1 —Median E 0 1 —Median
[ ©
E A A A LN Do |E oos <=
17} %]
£ -0.1 Y T & _0.05
o o
8-02 _g—0.125
o m -
~03 0.2
0 0.1 0.2 03 . 04 049 0 0.1 4 049
Ground-truth noise Ground truth n0|se
mnist
—Mean
o —Median|
T 0.02
£ 0.005
% 0. R
w
foo T TV Ty
§-0.025
D _0.04

0 0.1 0.2 03 . 04 0.49
Ground-truth noise
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Conclusion
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Learning from corrupted binary labels

Monotone relationship 77(x) = ¢, g z(1(x)) facilitates:

Range of 1

noise
estimator

Omit for BER

5

D D _ fi
! . estimator

=

sign(

classifier

(x)— q)@,ﬁﬁ(t))

Kernel logistic regression
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Future work - |

Better noise estimators?

@ c.f. (Elkan and Noto, 2008) when D separable

More general noise estimators?

@ e.g. learning from partial labels, multi-class corruption, ...

@ see formulation of (van Rooyen & Williamson, 2015)
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Future work - Il

Alternatives to neural network for class-probabilities?

@ choice of being unhinged versus neurotic

@ for linearly separable D, Isotron (Kalai and Sastry, 2009)

Fusion with “loss transfer” (Natarajan et al., 2013) approach

@ better for misspecified models

@ assumes noise rates known
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Future work - Ill

Applications:

Bike crashes Implicit feedback Eels’ habitats
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Thanks!
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