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Supervised learning in theory

P 3

0.2 0.1 0.4 0.2 0.1

Model training

Training data

Model predictions



Supervised learning in theory
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Supervised learning in practice
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What if this loss 
is expensive to 

compute?

Supervised learning in practice
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Supervised learning in practice
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Neural networks for classification
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Neural networks for classification
Training objective: minimise softmax cross-entropy

This approximately minimises the (negative) prediction margin:
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Neural networks for classification
Training objective: minimise softmax cross-entropy

This equivalently minimises the KL divergence:
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Supervised learning in theory
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Supervised learning in practice
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Why (not) increase model size?
Can work better!

Particularly for complex tasks, e.g.,
         language modelling 

😀

Belkin et al., ‘19. Reconciling modern machine learning practice and the bias-variance trade-off.
Kaplan et al. ‘20. Scaling Laws for Neural Language Models.



Why (not) increase model size?
Can work better!

Particularly for complex tasks, e.g.,
         language modelling 

More expensive to train

More expensive to predict

😀

😞

😖

Belkin et al., ‘19. Reconciling modern machine learning practice and the bias-variance trade-off.
Kaplan et al. ‘20. Scaling Laws for Neural Language Models.



Ideally, compress our model while preserving performance 

Idea: model compression

Many options: quantisation, architecture optimisation, distillation, …Many options: quantisation, architecture optimisation, distillation, …
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Train a “student” model using soft predictions from “teacher” model

Distillation in a nutshell
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Distillation loss function
Minimise teacher-weighted softmax cross-entropy
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Suppose the teacher’s predictions are pt

Then, we may minimise:

Distillation loss function: formally
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Transfers class relationship information
“Dark knowledge”
Learns which errors to penalise more

Per-sample label smoothing
Prevents over-confident predictions

Can be used on unlabelled samples
Form of semi-supervised learning!

Why does distillation help?
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Beyond probability matching
Can match more structure in teacher model

e.g., match embeddings, pairwise similarities, …

Romero et al., ‘15. FitNets: hints for thin deep nets.



Do we need complex teachers?
No. You can “self-distill” (!)

Can give non-trivial gains

Why does this help?

              Mostly an active area of research

One view: sample-dependent regularisation

��

Furlanello et al., ‘18. Born-again neural networks.
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Supervised learning in theory
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What if this loss 
is expensive to 

compute?

Supervised learning in practice

P 29

0.2 0.1 0.4 0.2 0.1

Model training

Training data

Model predictions



Neural networks for extreme classification
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Neural networks for extreme classification
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Neural networks for extreme classification

Training objective: minimise softmax cross-entropy

Hard to compute even for a single sample!

5.0 2.2 -1.1 0.3 0.1 -4.8 -1.9 … 0.5 - 5.0

Cockatoo
Parrot

Pigeon
Magpie

Sparrow
Crow Albatross

Bird of Paradise



Select a subset of “negative” labels to contrast against “positive”

Negative sampling
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“Positive” label “Negative” labels



Select a subset of “negative” labels to contrast against “positive”

Negative sampling
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“Positive” label “Negative” labels

Ideally, we would like the sampling to:
- Be easy to compute

- Result in informative negatives



(x1,              )

Solution #1: within-batch negatives

(x2,              )

(x3,              )

Choosing the sampling distribution

“Positive” label “Negative” labels

😀
😞

Easy to compute

Biased towards 
frequent labels



(x1,              )

Solution #2: uniform random negatives

(x2,              )

(x3,              )

Choosing the sampling distribution

“Positive” label “Negative” labels

😀

😞

Easy to compute

May not be 
informative

😀 Not biased 
towards any label



(x1,              )

Solution #3: hard negative mining
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(x3,              )

Choosing the sampling distribution

“Positive” label “Negative” labels

😀
😞

Maximally informative

Hard to compute



Finding hard-negatives
Ideally, find labels that are maximally confusing for model

😞

😖

this set changes as training progresses

finding these exactly still requires sweeping over all labels!

can approximate: find hardest labels within a large batch of uniformly 
sampled labels

😀

(x1,              )

Reddi et al., ‘18. Stochastic-negative mining for learning in large output spaces.



Model churn
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Supervised learning in theory
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Supervised learning in practice
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Model prediction disagreement under different training and/or inference conditions

Churn in a nutshell
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Suppose we have two classification models, M1 and M2
e.g., two independently trained models on the same data

The corresponding churn is the probability of disagreement:

Churn(M1, M2) = Pr(M1(x) ≠ M2(x))

Churn for classification

P 43

Fraction of times 
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Churn can only occur when one or both models is wrong
The better the individual models, the lower the churn

Churn versus accuracy
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Churn ≠ variation in accuracy

Churn versus accuracy variation
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Churn exists even when training on the same data, due to several sources of randomness:

Churn from model training
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Inherent non-determinism in GPU and TPU
Floating-point addition is not associative!

Churn from computing platform
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Do neural models exhibit churn?
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Unfortunately, yes

Predictions from 5x independently trained ResNet models on ImageNet
76.0% accuracy with 0.1% standard deviation
Disagreement on 15% of examples!

How do we mitigate such prediction differences?

Bhojanapalli et al., ‘20. On the reproducibility of neural network predictions



Approach: train two independent models, and encourage their 
predictions to be similar to each other

Can be seen as “co-distillation”
Bonus: also improves performance!

Motivation: churn is partly a result of randomness in training

Idea: explicitly try to smooth out this randomness!

Co-distillation

P 49
Anil et al., ‘18. Large scale distributed neural network training through online distillation

p1(x) p2(x)≈



Churn can also occur more generally between model versions
e.g., models trained on different weeks, with different architectures, …

Idea: constrain predictions to be similar to original model

Distillation for churn

Jiang et al., ‘20. Churn Reduction via Distillation

Implementation: distillation!
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Supervised learning in practice!
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Approach: reduce prediction entropy: for logits p, penalise

H(p) = -Σi pi log pi
 

discourage highly uncertain predictions

Motivation: churn occurs when samples’ labels flip

Idea: move examples away from the classifier boundary!

Entropy regularisers
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Refreshes of the data can change the learned model

Churn from data changes
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