Across the Great Divide: from ML Theory to Practice

Aditya Krishna Menon

Google NYC

Introduction

Research Scientist at Google NYC

Working on machine learning algorithm design and analysis

Google Research

Past lives:

- USyd
- UCSD
- NICTA/CSIRO Data61/ANU

Supervised learning in theory

Google Research

Training data

Model training

Supervised learning in theory

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

$$\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{n \in N} \ell(y_n, f(x_n))$$

$$f(x^*)$$

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

What if the model size is too large?

 $\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{n \in N} \ell(y_n, f(x_n))$

 $f(x^*)$

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

Model predictions

0.2 0.1 0.4 0.2 0.1

$$\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{n \in N} \ell(y_n, f(x_n))$$

What if this loss is **expensive** to compute?

 $f(x^*)$

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

0.2

0.1

What if this operation is stochastic?

Model predictions

 $f(x^*)$

Agenda

⁰¹ Background

- ⁰² Distillation
- ⁰³ Extreme classification
- ⁰⁴ Churn
- ⁰⁵ Summary

01

Background

Google Research

Training objective: minimise softmax cross-entropy

This approximately minimises the (negative) prediction margin:

Google Research

Training objective: minimise softmax cross-entropy

This equivalently minimises the **KL divergence**:

02

Distillation

Supervised learning in theory

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

$$\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{n \in N} \ell(y_n, f(x_n))$$

$$f(x^*)$$

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

What if the model size is too large?

 $\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{n \in N} \ell(y_n, f(x_n))$

 $f(x^*)$

Why increase model size?

Google Research

😀 Can work better!

Particularly for complex tasks, e.g., language modelling

Belkin et al., '19. Reconciling modern machine learning practice and the bias-variance trade-off. Kaplan et al. '20. Scaling Laws for Neural Language Models.

More expensive to train

More expensive to **predict** 2<

Belkin et al., '19. Reconciling modern machine learning practice and the bias-variance trade-off. Kaplan et al. '20. Scaling Laws for Neural Language Models.

Why (not) increase model size?

😀 Can **work better**!

Particularly for complex tasks, e.g., language modelling

Idea: model compression

Ideally, compress our model while preserving performance

Many options: quantisation, architecture optimisation, distillation,....

Distillation in a nutshell

Google Research

Train a "student" model using **soft predictions** from "teacher" model

Distillation loss function

Minimise

softmax cross-entropy

Distillation loss function

Minimise teacher-weighted softmax cross-entropy

$$\begin{array}{c} \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{1}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{5}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{5}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{5}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{5}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{5}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{5}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{5}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{5}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{5}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{5}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{5}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{5}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{5}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{5}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{5}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{5}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{1}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] & 0.3 \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{1}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{1}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] \\ \rho^{t}(\widetilde{\rho}) \times \log \sum \exp \left[\frac{1}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] \\ \rho^{t}(\widetilde{\rho}) \times \log \exp \left[\frac{1}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] \\ \rho^{t}(\widetilde{\rho}) \times \log \exp \left[\frac{1}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] \\ \rho^{t}(\widetilde{\rho}) \times \log \exp \left[\frac{1}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] \\ \rho^{t}(\widetilde{\rho}) \times \log \exp \left[\frac{1}{5.0} \frac{2}{2.2} - \frac{1}{1.1} \right] \\ \rho^{t}(\widetilde{\rho}) \times \log \exp \left[\frac{1}{5.0} \frac{2}{5.0} \frac{2}{5.0} \right] \\ \rho^{t}(\widetilde{\rho}) \times \log \exp \left[\frac{1}{5.0} \frac{2}{5.0} \frac{2}{5.0} \right] \\ \rho^{t}(\widetilde{\rho}) \times \log \exp \left[\frac{1}{5.0} \frac{2}{5.0} \frac{2}{5.0} \frac{2}{5.0} \right]$$

Distillation loss function: formally

Google Research

Suppose the teacher's predictions are p^t

Why does distillation help?

Transfers **class relationship** information "Dark knowledge"

Learns which errors to penalise more

Per-sample label smoothing

Prevents over-confident predictions

Can be used on **unlabelled samples** Form of semi-supervised learning!

		(B)		
250	0.8	0.2	0.0	0.0
3	0.1	0.9	0.0	0.0
500	0.0	0.1	0.8	0.1
	0.0	0.0	0.3	0.7

Beyond probability matching

Google Research

Can match more structure in teacher model

e.g., match embeddings, pairwise similarities, ...

Do we need complex teachers?

Google Research

No. You can "self-distill" (!) Can give non-trivial gains

Why does this help?

Mostly an active area of research

One view: sample-dependent regularisation

03

Extreme classification

Supervised learning in theory

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

$$\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{n \in N} \ell(y_n, f(x_n))$$

$$f(x^*)$$

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

Model predictions

 $\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{n \in N} \ell(y_n, f(x_n))$

What if this loss is **expensive** to compute?

 $f(x^*)$

Neural networks for classification Google Research

Neural networks for extreme classification Google Research

Neural networks for extreme classification Google Research

Training objective: minimise **softmax cross-entropy**

Hard to compute even for a single sample!

Negative sampling

Google Research

Select a subset of "negative" labels to contrast against "positive"

"Positive" label

"Negative" labels

Negative sampling

Google Research

Select a subset of "negative" labels to contrast against "positive"

"Negative" labels

Ideally, we would like the sampling to:

- Be easy to compute

"Positive" label

- Result in **informative** negatives

Choosing the sampling distribution

Google Research

Solution #1: within-batch negatives

"Positive" label

"Negative" labels

Biased towards frequent labels

Choosing the sampling distribution

Google Research

Solution #2: uniform random negatives

"Positive" label

"Negative" labels

Easy to compute

May not be informative

Choosing the sampling distribution

Google Research

Solution #3: hard negative mining

"Positive" label

"Negative" labels

Maximally informative

Hard to compute

Finding hard-negatives

Ideally, find labels that are **maximally confusing** for model

this set changes as training progresses

se finding these exactly still requires sweeping over all labels!

can approximate: find hardest labels within a large batch of uniformly sampled labels

04

Model churn

Supervised learning in theory

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

Model predictions

$$\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{n \in N} \ell(y_n, f(x_n))$$

$$f(x^*)$$

Supervised learning in practice

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

What if this operation is stochastic?

Model predictions

0.2 0.1 0.4 0.2 0.1

 $f(x^*)$

Churn in a nutshell

Model prediction disagreement under different training and/or inference conditions

Churn for classification

Suppose we have two classification models, M_1 and M_2 e.g., two independently trained models on the same data

The corresponding churn is the probability of disagreement:

```
Churn(M_1, M_2) = \Pr(M_1(x) \neq M_2(x))

Fraction of times

they predict a

different label
```

Churn versus accuracy

Churn can only occur when one or both models is wrong The better the individual models, the lower the churn

Churn versus accuracy variation

Churn from model training

Churn exists even when training on the **same** data, due to several sources of randomness:

Churn from computing platform

Google Research

Inherent non-determinism in GPU and TPU

Floating-point addition is not associative!

Do neural models exhibit churn?

Google Research

Unfortunately, **yes**

Predictions from 5x independently trained ResNet models on ImageNet 76.0% accuracy with 0.1% standard deviation Disagreement on **15%** of examples!

power drill - 0.48 sewing machine - 0.68 sewing machine - 0.28 sewing machine - 0.53 power drill - 0.87

wooden spoon - 0.24 spaghetti squash - 0.71 French loaf - 0.67 French loaf - 0.57 French loaf - 0.63

How do we mitigate such prediction differences?

Co-distillation

Motivation: churn is partly a result of randomness in training

Idea: explicitly try to smooth out this randomness!

Approach: train two independent models, and encourage their predictions to be similar to each other

Can be seen as "co-distillation" Bonus: also improves performance!

Distillation for churn

Churn can also occur more generally between model versions e.g., models trained on different weeks, with different architectures, ...

Idea: constrain predictions to be similar to original model

Summary

05

Supervised learning in practice!

Google Research

Training data

Model training

Model predictions

Thank you!

Aditya Krishna Menon

Research Scientist

Google NYC

Acknowledgements

Google Research

Images from Wikimedia Commons:

- Mediterranean house gecko, CC-BY-SA4.0
- Old English Sheepdog, CC-BY-SA4.0
- Dynastes Hercules, CC-BY-SA4.0
- Coccinellidae, CC-BY-SA4.0
- Major Mitchell's cockatoo, CC-BY-SA4.0
- Pink-necked green pigeon, CC-BY-SA4.0
- Common bronzewing pigeon, CC-BY-SA4.0
- Boeing 777-300ER, CC-BY-SA4.0
- Toyota Corolla, CC-BY-SA4.0
- Gang-gang cockatoo, CC-BY-SA3.0
- Laughing Kookaburra, CC-BY-SA3.0
- Australian magpie, CC-BY-SA3.0
- Paloma bravia, CC-BY-SA3.0
- Galah, CC-BY-SA3.0
- Egyptian swift pigeon, CC-BY-SA3.0
- Currawong, CC-BY-SA3.0
- Eastern koel, CC-BY-SA3.0
- Golden retriever, CC-BY-SA3.0
- Albatross, CC-BY-2.5
- Cat, CC-BY-2.5
- Rose-ringed parakeet, CC-BY-2.0
- Rock sparrow, CC-BY-2.0
- Carrion crow, CC-BY-2.0
- Greater bird of paradise, CC-BY-2.0
- Palm cockatoo, CC-BY-2.0
- nVidia Tesla, CC-0

Entropy regularisers

Motivation: churn occurs when samples' labels flip

Idea: move examples away from the classifier boundary!

Approach: reduce prediction entropy: for logits *p*, penalise

$$\Pi(p) = -\Sigma_i p_i \log p_i$$

 $||\langle u \rangle = \sum_{i=1}^{n} |u_i | |u_i \rangle$

discourage highly uncertain predictions

Churn from data changes

Refreshes of the data can change the learned model

