Across the Great Divide: from ML Theory to Practice

Aditya Krishna Menon

Google NYC

Introduction

Research Scientist at Google NYC

Working on machine learning algorithm design and analysis

Past lives:

- USyd
- UCSD
- NICTA/CSIRO Data61/ANU

Supervised learning in theory

Google Research

Training data

Model training

Model predictions

Supervised learning in theory

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

Model predictions

 $\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{n \in N} \ell(y_n, f(x_n))$

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

What if the model size is **too large**?

 $\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{n \in N} \ell(y_n, f(x_n))$

Model predictions

 $f(x^*)$

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

Model predictions

$$
\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{n \in N} \ell(y_n, f(x_n))
$$

What if this loss is **expensive** to compute?

 $f(x^*)$

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

What if this operation is **stochastic**?

Model predictions

 0.2 0.1 0.4 0.2 0.1

 $f(x^*)$

Agenda ⁰¹

Background

- **02 Distillation**
- **03** Extreme classification
- **04** Churn
- **05** Summary

01

Background

Google Research

Training objective: minimise **softmax cross-entropy**

This approximately minimises the (negative) **prediction margin**:

Google Research

Training objective: minimise **softmax cross-entropy**

This equivalently minimises the **KL divergence**:

02

Distillation

Supervised learning in theory

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

Model predictions

 $\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{n \in N} \ell(y_n, f(x_n))$

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

What if the model size is **too large**?

Model predictions

 $f(x^*)$

Why increase model size?

Google Research

Can **work better**!

Particularly for complex tasks, e.g., language modelling

Belkin et al., '19. Reconciling modern machine learning practice and the bias-variance trade-off. Kaplan et al. '20. Scaling Laws for Neural Language Models.

Particularly for complex tasks, e.g., language modelling

Why (not) increase model size?

Can **work better**!

 \rightarrow More expensive to **train**

More expensive to **predict** \geq

Belkin et al., '19. Reconciling modern machine learning practice and the bias-variance trade-off. Kaplan et al. '20. Scaling Laws for Neural Language Models.

 $10⁷$

Parameters

 $10⁹$

5.6 4.8

 2.4

Test Loss 4.0 3.2

 $10⁵$

Idea: model compression

Ideally, **compress** our model while **preserving** performance

Many options: quantisation, architecture optimisation, distillation,....

Distillation in a nutshell

Google Research

Train a "student" model using **soft predictions** from "teacher" model

Distillation loss function

Minimise **the softmax cross-entropy**

Distillation loss function

Minimise **teacher-weighted** softmax cross-entropy

$$
D^{t}(\sum)
$$
 x log \sum exp 5.0 2.2 -1.1 0.3 - 5.0 +
\n
$$
D^{t}(\sum)
$$
 x log \sum exp 5.0 2.2 -1.1 0.3 - 2.2 +
\n
$$
D^{t}(\sum)
$$
 x log \sum exp 5.0 2.2 -1.1 0.3 - 2.2 +
\n
$$
D^{t}(\sum)
$$
 x log \sum exp 5.0 2.2 -1.1 0.3 - 1.1 +
\n
$$
D^{t}(\sum)
$$
 x log \sum exp 5.0 2.2 -1.1 0.3 - 1.1

Distillation loss function: formally

Google Research

Suppose the teacher's predictions are *p t*

Why does distillation help?

Transfers **class relationship** information "Dark knowledge"

Learns which errors to penalise more

Per-sample **label smoothing**

Prevents over-confident predictions

Can be used on **unlabelled samples** Form of semi-supervised learning!

Beyond probability matching

Can match **more structure** in teacher model

e.g., match embeddings, pairwise similarities, …

Do we need complex teachers?

Google Research

No. You can "self-distill" **(!)** Can give non-trivial gains

Why does this help?

Mostly an active area of research

One view: sample-dependent regularisation

03

Extreme classification

Supervised learning in theory

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

Model predictions

 $\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{n \in N} \ell(y_n, f(x_n))$

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

Model predictions

What if this loss is **expensive** to compute?

 0.2 0.1 0.4 0.2 0.1

 $f(x^*)$

Neural networks for example classification Google Research

Neural networks for extreme classification

Google Research

Training objective: minimise **softmax cross-entropy**

Hard to compute even for a single sample!

Negative sampling

Google Research

Select a subset of "**negative**" labels to contrast against "**positive**"

"Positive" label "Negative" labels

Negative sampling

Google Research

Select a subset of "**negative**" labels to contrast against "**positive**"

"Positive" label "Negative" labels

Ideally, we would like the sampling to:

- Be **easy** to compute
- Result in **informative** negatives

Choosing the sampling distribution

Google Research

Solution #1: within-batch negatives

"Positive" label "Negative" labels

Biased towards frequent labels

Choosing the sampling distribution

Google Research

Solution #2: uniform random negatives

"Positive" label "Negative" labels

Easy to compute

May not be informative

Choosing the sampling distribution

Google Research

Solution #3: hard negative mining

"Positive" label "Negative" labels

Maximally informative

Hard to compute

Finding hard-negatives

Ideally, find labels that are **maximally confusing** for model

this set changes as training progresses

finding these exactly still requires sweeping over all labels!

can **approximate**: find hardest labels **within a large batch** of uniformly sampled labels

Reddi et al., '18. Stochastic-negative mining for learning in large output spaces.

04

Model churn

Supervised learning in theory

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

Model predictions

 $\min_{f \in \mathcal{F}} \frac{1}{N} \sum_{n \in N} \ell(y_n, f(x_n))$

Google Research

Training data

 $\{(x_n, y_n)\}_{n=1}^N$

Model training

What if this operation is **stochastic**?

Model predictions

 $f(x^*)$

Churn in a nutshell

Model prediction disagreement under different training and/or inference conditions

Churn for classification

Suppose we have two classification models, $M_{_1}$ and $M_{_2}$ e.g., two independently trained models on the same data

The corresponding churn is the probability of disagreement:

```
Churn(M<sub>1</sub>, M<sub>2</sub>) = Pr(M<sub>1</sub>(x) ≠ M<sub>2</sub>(x))Fraction of times 
      they predict a 
     different label
```
Churn versus accuracy

Churn can only occur when one or both models is wrong The better the individual models, the lower the churn

Churn versus accuracy variation

Churn from model training

Churn exists even when training on the **same** data, due to several sources of randomness:

Churn from computing platform

Google Research

Inherent non-determinism in GPU and TPU

Floating-point addition is not associative!

Do neural models exhibit churn?

Google Research

Unfortunately, **yes**

Predictions from 5x independently trained ResNet models on ImageNet 76.0% accuracy with 0.1% standard deviation Disagreement on **15%** of examples!

wooden spoon - 0.24 spaghetti squash - 0.71 French loaf - 0.67 French loaf - 0.57 French loaf - 0.63

swing -0.82 lawn mower - 0.56 tricycle - 0.49 balance beam - 0.75 lawn mower - 0.45

fountain pen - 0.46 can opener - 0.28 crossword - 0.62 hammer - 0.22 crossword - 0.5

How do we mitigate such prediction differences?

Co-distillation

Motivation: churn is partly a result of randomness in training

Idea: explicitly try to smooth out this randomness!

Approach: train two independent models, and encourage their predictions to be similar to each other

Can be seen as "co-distillation" **Bonus:** also improves performance!

Distillation for churn

Churn can also occur more generally between model versions e.g., models trained on different weeks, with different architectures, …

Idea: constrain predictions to be similar to original model

Summary

05

Google Research

Training data

Model training

Model predictions

Thank you!

Aditya Krishna Menon

Research Scientist

Google NYC

Acknowledgements

Google Research

Images from Wikimedia Commons:

- Mediterranean house gecko, CC-BY-SA4.0
- Old English Sheepdog, CC-BY-SA4.0
- Dynastes Hercules, CC-BY-SA4.0
- Coccinellidae, CC-BY-SA4.0
- Major Mitchell's cockatoo, CC-BY-SA4.0
- Pink-necked green pigeon, CC-BY-SA4.0
- Common bronzewing pigeon, CC-BY-SA4.0
- Boeing 777-300ER, CC-BY-SA4.0
- Toyota Corolla, CC-BY-SA4.0
- Gang-gang cockatoo, CC-BY-SA3.0
- Laughing Kookaburra, CC-BY-SA3.0
- Australian magpie, CC-BY-SA3.0
- Paloma bravia, CC-BY-SA3.0
- Galah, CC-BY-SA3.0
- Egyptian swift pigeon, CC-BY-SA3.0
- Currawong, CC-BY-SA3.0
- Eastern koel, CC-BY-SA3.0
- Golden retriever, CC-BY-SA3.0
- Albatross, CC-BY-2.5
- Cat, CC-BY-2.5
- Rose-ringed parakeet, CC-BY-2.0
- Rock sparrow, CC-BY-2.0
- Carrion crow, CC-BY-2.0
- Greater bird of paradise, CC-BY-2.0
- Palm cockatoo, CC-BY-2.0
- nVidia Tesla, CC-0

P 55

discourage highly uncertain predictions

 $H(p) = -\sum_{i} p_i \log p_i$

Approach: reduce prediction entropy: for logits *p*, penalise

Idea: move examples away from the classifier boundary!

Motivation: churn occurs when samples' labels flip

Entropy regularisers

 \overrightarrow{O}

 000

Churn from data changes

Refreshes of the data can change the learned model

