Three faces of binary classification

Aditya Krishna Menon

The Australian National University

Australian
«==/s National

3 University

May 21st, 2018

Today'’s lesson

All roads lead to binary classification

1/53

Today'’s lesson

All roads lead to binary classification

But what is binary classification, exactly?

1/53

Recap: binary classification

Goal: predict binary label y € {0,1} for instance x € X

@ we call y=1 the “positive” class, and y = 0 the “negative” class

2/53

Recap: binary classification

Goal: predict binary label y € {0,1} for instance x € X

@ we call y=1 the “positive” class, and y = 0 the “negative” class

We learn a predictive model from a training set {(x,,y.)}"_,

2/53

Recap: binary classification

Goal: predict binary label y € {0,1} for instance x € X

@ we call y =1 the “positive” class, and y = 0 the “negative” class

We learn a predictive model from a training set {(x,,y.)}"_,

Canonical models: SVMs, logistic regression

2/53

Recap: binary classification

Goal: predict binary label y € {0,1} for instance x € X

@ we call y =1 the “positive” class, and y = 0 the “negative” class

We learn a predictive model from a training set {(x,,y)}_,

Canonical models: SVMs, logistic regression

2/53

Recap: logistic regression

Logistic regression models the probability of an instance x
belonging to the positive class y =1

3/53

Recap: logistic regression

Logistic regression models the probability of an instance x
belonging to the positive class y =1

We posit this probability is

]P’(yzllx):W

3/53

Recap: logistic regression

Logistic regression models the probability of an instance x
belonging to the positive class y =1

We posit this probability is

1
]P’(yzllx):W

Classify x as positive if P(y=1|x) > 0.5

3/53

Logistic regression is classification?

We informally call logistic regression a “classifier”

4/53

Logistic regression is classification?

We informally call logistic regression a “classifier”

But the story is a bit more nuanced:

4/53

Logistic regression is classification?

We informally call logistic regression a “classifier”

But the story is a bit more nuanced:

1 [;T > 0.5}
l+e—w x

4/53

Logistic regression is classification?

We informally call logistic regression a “classifier”

But the story is a bit more nuanced:

1
e — 1|k > 0]

4/53

Logistic regression is classification?

We informally call logistic regression a “classifier”

But the story is a bit more nuanced:

1 1
T - sy ——— 5 -+
wTx T 1|t > 05)

4/53

Logistic regression is classification?

We informally call logistic regression a “classifier”

But the story is a bit more nuanced:

wlx — ﬁ > 1 1_|_6,1wa > 0.5}
m Mm Mm
R [0,1] {0, 1}

Scores Probabilities Classifications

4/53

Classifiers, probability estimators, scorers

We may call a model:
c: X —{0,1} a classifier
p: X —[0,1] a probability estimator

s: X —= R ascorer

5/53

Classifiers, probability estimators, scorers
We may call a model:

c: X —{0,1} a classifier
p: X —[0,1] a probability estimator
s: X — R ascorer

Logistic regression has a scorer

5/53

Classifiers, probability estimators, scorers
We may call a model:

c: X —{0,1} a classifier
p: X —[0,1] a probability estimator
s: X — R ascorer

Logistic regression has a scorer, which is implicitly converted
to a probability estimator

S(X)]_—|—e£3(x)
Mm Mm
R [0,1]

5/53

Classifiers, probability estimators, scorers
We may call a model:

c: X —{0,1} a classifier
p: X —[0,1] a probability estimator
s: X — R ascorer

Logistic regression has a scorer, which is implicitly converted
to a probability estimator, and then a classifier

S(X) >]__|_eis(x) > 1 |:1+els(x) > 05
m m Mm
R [0, 1] {0,1}

5/53

Where are they useful?

These models provide different things:
Classifiers hard decisions

Probability-estimators soft decisions (i.e., confidences)

Scorers soft-er decisions (i.e., rankings)

6/53

Model types: example

Consider predicting if a digit is even or odd

(X, Y) = load_digits(return_X_y = True)

for i in range (0, 4):
plt.subplot(2,2,i+1);

plt.imshow (X[i, :].reshape((8,8)), cmap = plt.cm.
gray_r, interpolation=’'nearest’)

N I |

5 5
L
0 5

gl
0 5
0 _am 0 5%
e =

7153

Model types: example
Consider predicting if a digit is even or odd

lrn = LogisticRegression()
lrn.fit (X, (Y $ 2 == 0) .astype(int))

print (lrn.predict (X[0, :].reshape(1,-1)))
print (lrn.predict_proba (X[0, :].reshape(1l,-1))[:,1])
print (lrn.decision_function (X[0, :].reshape(l,-1)))

8/53

Model types: example
Consider predicting if a digit is even or odd

lrn = LogisticRegression()
lrn.fit (X, (Y $ 2 == 0) .astype(int))

print (lrn.predict (X[0, :].reshape(1,-1)))

print (lrn.predict_proba (X[0, :].reshape(1l,-1))[:,1])
print (lrn.decision_function (X[0, :].reshape(l,-1)))
gives:

[1] (classification)
[0.99702005] (probability)

[5.81286542] (score)

8/53

Are they really different?

Informally, it is understood what one means when calling
logistic regression a “classifier”

9/53

Are they really different?

Informally, it is understood what one means when calling
logistic regression a “classifier”

Care is needed when evaluating the different types of models

9/53

Evaluating models

Evaluating models
The general principle for evaluation is:

Our model should discriminate between the two classes

10/53

Evaluating models
The general principle for evaluation is:

Our model should discriminate between the two classes

The precise meaning of “discriminate” varies:

Classifiers have prediction equal to the tar-
get label

Probability-estimators have probability close to the tar-
get label

Scorers score positive instances higher

than negative instances

10/53

Evaluating models: summary

The general principle for evaluation is:
Our model should discriminate between the two classes

The precise meaning of “discriminate” varies:
Classifiers misclassification error

Probability-estimators log-loss

Scorers pairwise disagreement

10/53

Evaluating models: summary

The general principle for evaluation is:
Our model should discriminate between the two classes

The precise meaning of “discriminate” varies:

Classifiers misclassification error
Probability-estimators log-loss

Scorers pairwise disagreement

10/53

Evaluating a classifier

Suppose one trains a classifier ¢: X — {0,1}

How do we tell if ¢ is “good”, or not?

1/53

Evaluating a classifier

Suppose one trains a classifier ¢: X — {0,1}

How do we tell if ¢ is “good”, or not?

Natural thought: look at the misclassification error

1N
ERR(c :ﬁgl[y,ﬁécxn

i.e., the fraction of erroneous classifications

1/53

Evaluating a classifier: example

(X, Y) = load_digits(return_X_y = True)

XTr, XTe, YTr, YTe = train_test_split(X, (Y % 2 == 0).
astype (int), random_state = 42)

lrn = LogisticRegression|()
lrn.fit (XTr, YTr)

1 - accuracy_score(YTe, lrn.predict (XTe))

12/53

Evaluating a classifier: example

(X, Y) = load_digits(return_X_y = True)

XTr, XTe, YTr, YTe = train_test_split(X, (Y % 2 == 0).
astype (int), random_state = 42)

lrn = LogisticRegression|()
lrn.fit (XTr, YTr)

1 - accuracy_score(YTe, lrn.predict (XTe))

We get a misclassification error of 6. 7%: pretty good!

12/53

Evaluating a scorer

Suppose one trains a scorer s: X — R

How do we tell if s is “good”, or not?

13/53

Evaluating a scorer

Suppose one trains a scorer s: X — R
How do we tell if s is “good”, or not?

We could look at either:

@ how accurate our derived classifier is

@ if our scores discriminate the two classes

13/53

Evaluating a scorer

Suppose one trains a scorer s: X — R
How do we tell if s is “good”, or not?

We could look at either:

@ how accurate our derived classifier is

@ if our scores discriminate the two classes

We'll return to the first option later

13/53

Evaluating a scorer

Intuitively, s is bad if it scores instances with y = 0 higher than
those with y =1

14/53

Evaluating a scorer

Intuitively, s is bad if it scores instances with y = 0 higher than
those with y =1

We might measure this using the pairwise-disagreement:

1

PD(s) = No N,

Y Y 1fs(x) <s(xm)]

n:y,=1m: y,=0
where N; = # instances with y, =i

@ fraction of positives scored below negatives

1%/ 53

Evaluating a scorer

(X, Y) = load_digits(return_X_y = True)

XTr, XTe, YTr, YTe = train_test_split(X, (Y % 2 == 0).
astype (int), random_state 42)

lrn = LogisticRegression|()
lrn.fit (XTr, YTr)

1 - roc_auc_score(YTe, lrn.decision_function (XTe))

15/53

Evaluating a scorer

(X, Y) = load_digits(return_X_y = True)

XTr, XTe, YTr, YTe = train_test_split(X, (Y % 2 == 0).
astype (int), random_state = 42)

lrn = LogisticRegression|()
lrn.fit (XTr, YTr)

1 - roc_auc_score(YTe, lrn.decision_function (XTe))

We get a pairwise disagreement of 2. 6%: very good!

15/53

Evaluating a scorer

We get a different answer if we use pairwise disagreement to
evaluate the classifier:
(X, ¥) =

load_digits (return_X_y = True)

XTr, XTe, YTr, YTe = train_test_split(X, (Y % 2 == 0).
astype (int), random_state = 42)

lrn = LogisticRegression ()

lrn.fit (XTr, YTr)

1 - roc_auc_score(YTe, lrn.predict (XTe))

16 /53

Evaluating a scorer

We get a different answer if we use pairwise disagreement to
evaluate the classifier:

(X, Y) = load_digits(return_X_y = True)

XTr, XTe, YTr, YTe = train_test_split(X, (Y % 2 == 0).
astype (int), random_state = 42)

lrn = LogisticRegression ()
lrn.fit (XTr, YTr)

1 - roc_auc_score(YTe, lrn.predict (XTe))

We get a pairwise disagreement of 6.7% # 2. 6%!

16 /53

Evaluating models: summary

The general principle for evaluation is:
Our model should discriminate between the two classes

The precise meaning of “discriminate” varies:
Classifiers misclassification error

Probability-estimators log-loss

Scorers pairwise disagreement

17/53

Roadmap

We'll look at how classification can be useful in:
@ predicting rare events
@ imputing missing data (by creating features)

@ generating images (by creating labels)

18 /53

Roadmap

We'll look at how classification can be useful in:

@ predicting rare events
@ imputing missing data (by creating features)

@ generating images (by creating labels)

18 /53

Application: imbalanced learning

Putting our skills to the test

Suppose we are approached by a marketing company

19/53

Putting our skills to the test

Suppose we are approached by a marketing company

They want to know which people to send promotional fliers to

19/53

Putting our skills to the test

Suppose we are approached by a marketing company
They want to know which people to send promotional fliers to

They offer us historical data on people who were sent fliers,
and whether or not they responded

19/53

Putting our skills to the test

Suppose we are approached by a marketing company
They want to know which people to send promotional fliers to

They offer us historical data on people who were sent fliers,
and whether or not they responded

Natural thought: train a classifier!

19/53

Putting our skills to the test

M = loadmat (' kddcup98.mat’) ;

X = M["X"]

Y = M['Y’'].flatten ()

XTr, XTe, YTr, YTe = train_test_split (X, Y, random_state
= 42, test_size = 0.20)

lrn = LogisticRegression|()
lrn.fit (XTr, YTr)
1 - accuracy_score (YTe, lrn.predict (XTe))

20/53

Putting our skills to the test

M = loadmat (' kddcup98.mat’) ;

X = M["X"]

Y = M['Y’'].flatten ()

XTr, XTe, YTr, YTe = train_test_split (X, Y, random_state
= 42, test_size 0.20)

lrn = LogisticRegression|()
lrn.fit (XTr, YTr)
1 - accuracy_score (YTe, lrn.predict (XTe))

We get a misclassification error of 5. 0%: very good!

20/53

Putting our skills to the test

We confidently present our classifier to the company

21/53

Putting our skills to the test

We confidently present our classifier to the company

Unfortunately, a week later, they irately fire us

21/53

That's all they wrote
When asked why they are unhappy, the company responds:

22/53

That's all they wrote
When asked why they are unhappy, the company responds:

40000
30000

20000

Frequency

10000

00.00 025 050 0.75 1.00

Prediction

22/53

That's all they wrote
When asked why they are unhappy, the company responds:

40000
30000

20000

Frequency

10000

00.00 025 050 0.75 1.00

Prediction

We ended up predicting that no one should be sent a flier!

22/53

Evaluating a classifier: revisited

Recall that we proposed to compute:

ERR(c Z 1]y, # c(x,)]

23/53

Evaluating a classifier: revisited

Recall that we proposed to compute:

ERR(c Z 1]y, # c(x,)]

Suppose that most y, =0, e.g., most people don't respond

23/53

Evaluating a classifier: revisited

Recall that we proposed to compute:

1 N
ERR(c :Ng [Vn # ¢(Xn)]
Suppose that most y, =0, e.g., most people don't respond

If we always predicted c¢(x) = 0, we would find:

Ny

ERR(c) = 1,

where N; is the # of instances with y, =1

23/53

Evaluating a classifier: revisited

Recall that we proposed to compute:

1 N
ERR(c :NZ [Vn 7 c(Xn)]
Suppose that most y, =0, e.g., most people don't respond

If we always predicted c¢(x) = 0, we would find:

Ny

ERR(c) = 1,

where N; is the # of instances with y, =1

Since Ny < N, the error rate will be very low!

23/53

Per-class misclassification error

Intuitively, a trivial classifier is bad because it does not
discriminate between the classes

24/ 53

Per-class misclassification error

Intuitively, a trivial classifier is bad because it does not
discriminate between the classes

To unwrap this, we could compute the per-class error rates,

ERR(c Z L[y, # c(xn)]
n: y,=1

ERRy(c) = Nio 01[n 7 ¢(Xn)]
n: yn=

24/ 53

Per-class misclassification error

Intuitively, a trivial classifier is bad because it does not
discriminate between the classes

To unwrap this, we could compute the per-class error rates,

ERR; (¢ Z 1]y, # c(xy)]
n: y,=1

ERR()(C) =]Vi() 01[n 7£ C(Xn)]
n:yp=

These are known as the false negative and false positive rates

24/ 53

Weighted misclassification error

Standard misclassification error is:
ERR(c) = p-ERR{(c) + (1 —p)-ERRy(c),

where p = % is the fraction of instances with y, =1

25/53

Weighted misclassification error

Standard misclassification error is:
ERR(c) = p-ERR{(c) + (1 —p)-ERRy(c),

where p = % is the fraction of instances with y, =1

Problem arises because p < 0.5!

25/53

Weighted misclassification error

Standard misclassification error is:
ERR(c) = p-ERR{(c) + (1 —p)-ERRy(c),

where p = % is the fraction of instances with y, =1
Problem arises because p < 0.5!

Consider instead a cost-weighted error
ERR(c) =w-ERR|(c¢)+ (1 —w)-ERRg(c),

for w € [0,1] the relative importance of per-class errors

25/53

Putting our skills to the test: revisited

C = confusion_matrix (YTe, lrn.predict (XTe))
w = 0.5
w « C[O0,1] + (1 - w) * C[1,1]

26/53

Putting our skills to the test: revisited

C = confusion_matrix (YTe, lrn.predict (XTe))
w = 0.5
w « C[O0,1] + (1 - w) * C[1,1]

We get a weighted error rate of 50%: that sounds very bad!

26/53

Putting our skills to the test: revisited

C = confusion_matrix (YTe, lrn.predict (XTe))
w = 0.5
w « C[O0,1] + (1 - w) * C[1,1]

We get a weighted error rate of 50%: that sounds very bad!

We might now use this measure to compare different classifiers

26/53

Putting our skills to the test: revisited

C = confusion_matrix (YTe, lrn.predict (XTe))
w = 0.5
w « C[O0,1] + (1 - w) * C[1,1]

We get a weighted error rate of 50%: that sounds very bad!
We might now use this measure to compare different classifiers

More abstractly, we are summarising a confusion matrix

26/53

Putting our skills to the test

We could also try to evaluate our underlying scorer:
M = loadmat (' kddcup98.mat’) ;

lrn = LogisticRegression ()
lrn.fit (XTr, YTr)

1 - roc_auc_score (YTe, lrn.decision_function (XTe))

27/53

Putting our skills to the test

We could also try to evaluate our underlying scorer:
M = loadmat (' kddcup98.mat’) ;

lrn = LogisticRegression ()
lrn.fit (XTr, YTr)

1 - roc_auc_score (YTe, lrn.decision_function (XTe))

We get a pairwise disagreement of 38.2%: not great, but not
trivial either!

27/53

Distribution of scores

There is a slight gap between y =1 and y = 0 amongst the scores

1.00

e oy=1
T y=0

0.75

0.50

0.25

0.00

-6

28/53

Distribution of scores

There is a slight gap between y =1 and y = 0 amongst the scores

1.00
0.75
0.50

0.25

But also note that all the scores are < 0!

@ we are picking a bad threshold to form a classifier!

1
o -

< <

28/53

ROC curves

Given a scorer s, we could make a classifier ¢; using any t € R:

cr(x) = 1]s(x) > 1]

29/53

ROC curves

Given a scorer s, we could make a classifier ¢; using any t € R:

cr(x) = 1]s(x) > 1]

The ROC curve is a plot of the resulting false versus true
positives, as ¢ is varied:

{(ERRy(c;),1 —ERR;(c,)): t € R}

29/53

ROC curves

Given a scorer s, we could make a classifier ¢; using any t € R:

cr(x) = 1]s(x) > 1]

The ROC curve is a plot of the resulting false versus true
positives, as ¢ is varied:

{(ERRy(c;),1 —ERR;(c,)): t € R}

This is a graphical summary of all possible classifiers we could
obtain by thresholding s

29/53

ROC curves: example
fpr, tpr, thresholds = roc_curve (YTe, lrn.
decision_function (XTe), pos_label = 1)

14

plt.plot (fpr, tpr, .=’ , markersize = 12);

True positive rate
e o o o =
N £ [} [ee] o

©
o

0.00 0.25 0.50 0.75 1.00
False positive rate

Any point on this curve corresponds to a single classifier ¢,

30/53

ROC curves: example

fpr, tpr, thresholds = roc_curve (YTe, lrn.
decision_function (XTe), pos_label = 1)

plt.plot (fpr, tpr, ’'.-’, markersize = 12);

True positive rate
e o o =
£ [} [ee] o

©
N}

0.0
0.00 0.25 0.50 0.75 1.00
False positive rate

Trivial “always negative” classifier: weighted error 50%

30/53

ROC curves: example

fpr, tpr, thresholds = roc_curve (YTe, lrn.
decision_function (XTe), pos_label = 1)

plt.plot (fpr, tpr, ’'.-’, markersize = 12);

True positive rate
e o o o =
N £ [} [ee] o

©
o

0.00 0.25 0.50 0.75 1.00
False positive rate

Better classifier: weighted error 36%

30/53

ROC and pairwise disagreement
It turns out that pairwise disagreement is one minus the area
under the ROC curve

31/53

ROC and pairwise disagreement
It turns out that pairwise disagreement is one minus the area
under the ROC curve

Intuitively, average performance of collection {¢;: t € R}

31/53

ROC and pairwise disagreement
It turns out that pairwise disagreement is one minus the area
under the ROC curve

Intuitively, average performance of collection {¢;: t € R}

True positive rate
c o o =
£ [e)] oo o

©
N

0.0
0.00 0.25 0.50 0.75 1.00
False positive rate

31/53

Roadmap

We'll look at how classification can be useful in:
@ predicting rare events
@ imputing missing data (by creating features)

@ generating images (by creating labels)

32/53

Roadmap

We'll look at how classification can be useful in:

@ predicting rare events
@ imputing missing data (by creating features)

@ generating images (by creating labels)

32/53

Application: matrix factorisation

ltem response modelling

Suppose an education board approaches us with results from
their latest exam

33/53

ltem response modelling

Suppose an education board approaches us with results from
their latest exam

The examiners prepared a number of different questions

33/53

ltem response modelling

Suppose an education board approaches us with results from
their latest exam

The examiners prepared a number of different questions

Each student was give a different subset of these questions

33/53

ltem response modelling

Suppose an education board approaches us with results from
their latest exam

The examiners prepared a number of different questions
Each student was give a different subset of these questions

They want to standardise performance across students

33/53

ltem response modelling: goal

How to account for the fact that some students may have
gotten an easy batch of questions?

s, & 4

Amx ?2 %
£ v % o
e v v

34/53

ltem response modelling: strategy

We want to predict how well a student would do on all other
questions they weren't asked

£ £ 4
x o
v % iy
ViV

35/53

Item response modelling: input

Our observed data comprises triplets of the form (student ID,
question ID, correct?)

36/53

Item response modelling: input

Our observed data comprises triplets of the form (student ID,
question ID, correct?)

Compactly, {(xs,yn)}_,, where x, = (sn,g,) and y, € {0,1}

36/53

Item response modelling: input

Our observed data comprises triplets of the form (student ID,
question ID, correct?)

Compactly, {(xs,yn)}_,, where x, = (sn,g,) and y, € {0,1}
We want a classifier ¢: X — {0,1}

@ use this to predict unseen (student, question) outcomes

36/53

Constructing a classifier

Our inputs x,, may just be numeric IDs

@ e.g, we don't know anything about students apart from their
student number

@ using this as a raw feature isn’t intuitive

37/53

Constructing a classifier

Our inputs x,, may just be numeric IDs

@ e.g, we don't know anything about students apart from their
student number

@ using this as a raw feature isn’t intuitive

How can we construct a classifier without any features?!

37/53

Constructing a classifier

Our inputs x,, may just be numeric IDs

@ e.g, we don't know anything about students apart from their
student number

@ using this as a raw feature isn’t intuitive

How can we construct a classifier without any features?!

We can try to learn good features from the data!

37/53

Constructing a classifier
Construct classifier ¢ via probability-estimator

38/53

Constructing a classifier
Construct classifier ¢ via probability-estimator

Recall that logistic regression posits:
1

P()’Zl\X)ZW

38/53

Constructing a classifier
Construct classifier ¢ via probability-estimator

Recall that logistic regression posits:

1
Ply=1[x)= T o
For x = (s,¢), we can posit:
1

38/53

Constructing a classifier
Construct classifier ¢ via probability-estimator

Recall that logistic regression posits:

1
Ply=1[x)= T o
For x = (s,¢), we can posit:
Ply=1]x)=—
y= = Tre v

Here, u, and v, are learned features for the student and
question respectively

38/53

Training the probability-estimator
For fixed question features v,,

1

S PP

is a logistic model with features v, and parameters u,!

39/53

Training the probability-estimator
For fixed question features v,,

1

S PP

is a logistic model with features v, and parameters u,!

Similarly for fixed student features u,, we are fitting a logistic
model with features u, and parameters v,

39/53

Training the probability-estimator
For fixed question features v,,

1

S PP

is a logistic model with features v, and parameters u,!

Similarly for fixed student features u,, we are fitting a logistic
model with features u, and parameters v,

We can fit the model by alternating optimisation:

@ fix {u,}, and then fit {v,} via logistic regression
@ fix {v,}, and then fit {u,} via logistic regression

@ iterate till convergence

39/53

Matrix factorisation view

This can also be understood as a form of nonlinear matrix
factorisation (c.f. PCA)

& & & & & &
Amx? x Am
£ v ox 2 x VY
B-:- - v B

40 /53

Matrix factorisation view

This can also be understood as a form of nonlinear matrix
factorisation (c.f. PCA)

& & & & & &
g o« B
£ v ox 2 x VY
B-:- - v B

Compared to e.g. PCA, account for missing data

40 /53

Other applications

Same idea applicable for recommender systems

TN PEAKS

—
N

41/53

Roadmap

We'll look at how classification can be useful in:
@ predicting rare events
@ imputing missing data (by creating features)

@ generating images (by creating labels)

42 /53

Roadmap

We'll look at how classification can be useful in:

@ predicting rare events
@ imputing missing data (by creating features)

@ generating images (by creating labels)

42 /53

Application: GANs

Generative models

Suppose we want a model that can generate images

From https://medium.com/@ageitgey/
abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee?’

43/53

https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7
https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

Generative models

Suppose we want a model that can generate images

e.g., from Nintendo game backgrounds

From https://medium.com/@ageitgey/
abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee?’

43/53

https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7
https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

Generative models
Suppose we want a model that can generate images

e.g., from Nintendo game backgrounds

eeerer

From https://medium.com
abusing-generative-adv

43/53

https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7
https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

Generative models: formally

We are given a set of instances {x,}_,, e.g.,, images

44 /53

Generative models: formally

We are given a set of instances {x,}_,, e.g.,, images

We want a generator g: Z— X

44 /53

Generative models: formally

We are given a set of instances {x,}_,, e.g.,, images
We want a generator g: Z— X

We then draw samples {g(z,,)}*_,, for random seed vectors z,,

m=11

44 /53

Classification problem?

There are no labels available as input

45/53

Classification problem?

There are no labels available as input

Hence, we can't possibly treat this as a classification problem

45/53

Classification problem?

There are no labels available as input

Hence, we can't possibly treat this as a classification problem

Unless we create some labels ourselves!

45/53

A classification perspective

We are given a set of instances {x,}_,, e.g,, images

46 /53

A classification perspective

We are given a set of instances {x,}_,, e.g,, images

Suppose we have generator g: Z — X, and we draw {g(z,)}"

m=1

46 /53

A classification perspective

We are given a set of instances {x,}_,, e.g,, images
Suppose we have generator g: Z — X, and we draw {g(z,)}"

m=1

How do we tell if g is good, or not?

46 /53

A classification perspective

We are given a set of instances {x,}_,, e.g,, images

M

m=1

Suppose we have generator g: Z — X, and we draw {g(z,,)
How do we tell if g is good, or not?

Find a classifier to distinguish between {x,}"_, and {g(zx)}"

|
m=1"*

@ if a powerful classifier can’t tell the difference, then probably
humans can’t either!

46 /53

A classification perspective

Generated images True images

versus

47153

A training objective

Goal: find g whose outputs maximally confuse any classifier!

48/53

A training objective

Goal: find g whose outputs maximally confuse any classifier!

Iteratively optimise generator until its results are
indistinguishable from the inputs

48/53

A training objective

Goal: find g whose outputs maximally confuse any classifier!

Iteratively optimise generator until its results are
indistinguishable from the inputs

48/53

GANS summary
Can think of our procedure as a game between the generator
and a discriminator (classifier)

Generated data

R ~.\
, ——Fake?

Input data

49 /53

GANS summary
Can think of our procedure as a game between the generator
and a discriminator (classifier)

Generated data

R ~.\
, ——Fake?

Input data

Generative adversarial networks (GANs) implement this idea
with neural networks for the generator and discriminator

49 /53

GAN examples

CCACI\é Creative Adversarial Networks Generating “Art” by Learning About Styles and Deviating from Style Norms. Elgammal et al,,
1CCC 2017.

50/53

GAN examples

Image-to-Image Translation with Conditional Adversarial Networks. Isola et al., CVPR 2017.
51/53

Final thoughts

Summary

Three views of classification
Evaluating classifiers

How classification can be useful in:
@ predicting rare events
@ imputing missing data (by creating features)

@ generating images (by creating labels)

52/53

Today'’s lesson

All roads lead to binary classification

53/53

Today'’s lesson

All roads lead to binary classification

But we need to be careful in defining what “classification” is!

53/53

	Evaluating models
	Application: imbalanced learning
	Application: matrix factorisation
	Application: GANs
	Final thoughts

