
Three faces of binary classi�cation

Aditya Krishna Menon

The Australian National University

May 21st, 2018



Today’s lesson
All roads lead to binary classi�cation

Binary 
classification

But what is binary classi�cation, exactly?

1 / 53



Today’s lesson
All roads lead to binary classi�cation

Binary 
classification

But what is binary classi�cation, exactly?
1 / 53



Recap: binary classi�cation

Goal: predict binary label y ∈ {0,1} for instance x ∈ X

we call y = 1 the “positive” class, and y = 0 the “negative” class

We learn a predictive model from a training set {(xn,yn)}N
n=1

Canonical models: SVMs,

2 / 53



Recap: binary classi�cation

Goal: predict binary label y ∈ {0,1} for instance x ∈ X

we call y = 1 the “positive” class, and y = 0 the “negative” class

We learn a predictive model from a training set {(xn,yn)}N
n=1

Canonical models: SVMs,

2 / 53



Recap: binary classi�cation

Goal: predict binary label y ∈ {0,1} for instance x ∈ X

we call y = 1 the “positive” class, and y = 0 the “negative” class

We learn a predictive model from a training set {(xn,yn)}N
n=1

Canonical models: SVMs, logistic regression

2 / 53



Recap: binary classi�cation

Goal: predict binary label y ∈ {0,1} for instance x ∈ X

we call y = 1 the “positive” class, and y = 0 the “negative” class

We learn a predictive model from a training set {(xn,yn)}N
n=1

Canonical models: SVMs, logistic regression

2 / 53



Recap: logistic regression

Logistic regression models the probability of an instance x
belonging to the positive class y = 1

We posit this probability is

P(y = 1 | x) = 1
1+ e−wTx

Classify x as positive if P(y = 1 | x)> 0.5

3 / 53



Recap: logistic regression

Logistic regression models the probability of an instance x
belonging to the positive class y = 1

We posit this probability is

P(y = 1 | x) = 1
1+ e−wTx

Classify x as positive if P(y = 1 | x)> 0.5

3 / 53



Recap: logistic regression

Logistic regression models the probability of an instance x
belonging to the positive class y = 1

We posit this probability is

P(y = 1 | x) = 1
1+ e−wTx

Classify x as positive if P(y = 1 | x)> 0.5

3 / 53



Logistic regression is classi�cation?

We informally call logistic regression a “classi�er”

But the story is a bit more nuanced:

4 / 53



Logistic regression is classi�cation?

We informally call logistic regression a “classi�er”

But the story is a bit more nuanced:

4 / 53



Logistic regression is classi�cation?

We informally call logistic regression a “classi�er”

But the story is a bit more nuanced:

wTx
1

1+e−wTx 1
[

1

1+e−wTx > 0.5
]

4 / 53



Logistic regression is classi�cation?

We informally call logistic regression a “classi�er”

But the story is a bit more nuanced:

wTx
1

1+e−wTx 1
[

1

1+e−wTx > 0.5
]

4 / 53



Logistic regression is classi�cation?

We informally call logistic regression a “classi�er”

But the story is a bit more nuanced:

wTx
1

1+e−wTx 1
[

1

1+e−wTx > 0.5
]

4 / 53



Logistic regression is classi�cation?

We informally call logistic regression a “classi�er”

But the story is a bit more nuanced:

wTx
1

1+e−wTx 1
[

1

1+e−wTx > 0.5
]

R
Scores

[0, 1]
Probabilities

{0, 1}
Classifications

∈ ∈ ∈

4 / 53



Classi�ers, probability estimators, scorers
We may call a model:

c : X→{0,1} a classi�er

p : X→ [0,1] a probability estimator

s : X→ R a scorer

Logistic regression has a scorer

, which is implicitly converted
to a probability estimator, and then a classi�er

5 / 53



Classi�ers, probability estimators, scorers
We may call a model:

c : X→{0,1} a classi�er

p : X→ [0,1] a probability estimator

s : X→ R a scorer

Logistic regression has a scorer

, which is implicitly converted
to a probability estimator, and then a classi�er

s(x) 1
1+e−s(x) 1

[
1

1+e−s(x) > 0.5
]

R [0, 1] {0, 1}

∈ ∈ ∈

5 / 53



Classi�ers, probability estimators, scorers
We may call a model:

c : X→{0,1} a classi�er

p : X→ [0,1] a probability estimator

s : X→ R a scorer

Logistic regression has a scorer, which is implicitly converted
to a probability estimator

, and then a classi�er

s(x) 1
1+e−s(x) 1

[
1

1+e−s(x) > 0.5
]

R [0, 1] {0, 1}

∈ ∈ ∈

5 / 53



Classi�ers, probability estimators, scorers
We may call a model:

c : X→{0,1} a classi�er

p : X→ [0,1] a probability estimator

s : X→ R a scorer

Logistic regression has a scorer, which is implicitly converted
to a probability estimator, and then a classi�er

s(x) 1
1+e−s(x) 1

[
1

1+e−s(x) > 0.5
]

R [0, 1] {0, 1}

∈ ∈ ∈

5 / 53



Where are they useful?

These models provide di�erent things:

Classi�ers hard decisions

Probability-estimators so� decisions (i.e., con�dences)

Scorers so�-er decisions (i.e., rankings)

6 / 53



Model types: example
Consider predicting if a digit is even or odd
(X, Y) = load_digits(return_X_y = True)

for i in range(0, 4):
plt.subplot(2,2,i+1);
plt.imshow(X[i,:].reshape((8,8)), cmap = plt.cm.

gray_r, interpolation=’nearest’)

0 5

0

5

0 5

0

5

0 5

0

5

0 5

0

5

7 / 53



Model types: example
Consider predicting if a digit is even or odd
lrn = LogisticRegression()
lrn.fit(X, (Y % 2 == 0).astype(int))

print(lrn.predict(X[0,:].reshape(1,-1)))
print(lrn.predict_proba(X[0,:].reshape(1,-1))[:,1])
print(lrn.decision_function(X[0,:].reshape(1,-1)))

gives:

[1] (classi�cation)

[0.99702005] (probability)

[5.81286542] (score)

8 / 53



Model types: example
Consider predicting if a digit is even or odd
lrn = LogisticRegression()
lrn.fit(X, (Y % 2 == 0).astype(int))

print(lrn.predict(X[0,:].reshape(1,-1)))
print(lrn.predict_proba(X[0,:].reshape(1,-1))[:,1])
print(lrn.decision_function(X[0,:].reshape(1,-1)))

gives:

[1] (classi�cation)

[0.99702005] (probability)

[5.81286542] (score)
8 / 53



Are they really di�erent?

Informally, it is understood what one means when calling
logistic regression a “classi�er”

Care is needed when evaluating the di�erent types of models

9 / 53



Are they really di�erent?

Informally, it is understood what one means when calling
logistic regression a “classi�er”

Care is needed when evaluating the di�erent types of models

9 / 53



Evaluating models



Evaluating models
The general principle for evaluation is:

Our model should discriminate between the two classes

The precise meaning of “discriminate” varies:

Classi�ers have prediction equal to the tar-
get label

Probability-estimators have probability close to the tar-
get label

Scorers score positive instances higher
than negative instances

10 / 53



Evaluating models
The general principle for evaluation is:

Our model should discriminate between the two classes

The precise meaning of “discriminate” varies:

Classi�ers have prediction equal to the tar-
get label

Probability-estimators have probability close to the tar-
get label

Scorers score positive instances higher
than negative instances

10 / 53



Evaluating models: summary
The general principle for evaluation is:

Our model should discriminate between the two classes

The precise meaning of “discriminate” varies:

Classi�ers misclassi�cation error

Probability-estimators log-loss

Scorers pairwise disagreement

10 / 53



Evaluating models: summary
The general principle for evaluation is:

Our model should discriminate between the two classes

The precise meaning of “discriminate” varies:

Classi�ers misclassi�cation error

Probability-estimators log-loss

Scorers pairwise disagreement

10 / 53



Evaluating a classi�er

Suppose one trains a classi�er c : X→{0,1}

How do we tell if c is “good”, or not?

Natural thought: look at the misclassi�cation error

ERR(c) =
1
N

N

∑
n=1

1[yn 6= c(xn)],

i.e., the fraction of erroneous classi�cations

11 / 53



Evaluating a classi�er

Suppose one trains a classi�er c : X→{0,1}

How do we tell if c is “good”, or not?

Natural thought: look at the misclassi�cation error

ERR(c) =
1
N

N

∑
n=1

1[yn 6= c(xn)],

i.e., the fraction of erroneous classi�cations

11 / 53



Evaluating a classi�er: example
(X, Y) = load_digits(return_X_y = True)

...

XTr, XTe, YTr, YTe = train_test_split(X, (Y % 2 == 0).
astype(int), random_state = 42)

lrn = LogisticRegression()
lrn.fit(XTr, YTr)

1 - accuracy_score(YTe, lrn.predict(XTe))

We get a misclassi�cation error of 6.7%: pretty good!

12 / 53



Evaluating a classi�er: example
(X, Y) = load_digits(return_X_y = True)

...

XTr, XTe, YTr, YTe = train_test_split(X, (Y % 2 == 0).
astype(int), random_state = 42)

lrn = LogisticRegression()
lrn.fit(XTr, YTr)

1 - accuracy_score(YTe, lrn.predict(XTe))

We get a misclassi�cation error of 6.7%: pretty good!

12 / 53



Evaluating a scorer

Suppose one trains a scorer s : X→ R

How do we tell if s is “good”, or not?

We could look at either:

how accurate our derived classi�er is

if our scores discriminate the two classes

We’ll return to the �rst option later

13 / 53



Evaluating a scorer

Suppose one trains a scorer s : X→ R

How do we tell if s is “good”, or not?

We could look at either:

how accurate our derived classi�er is

if our scores discriminate the two classes

We’ll return to the �rst option later

13 / 53



Evaluating a scorer

Suppose one trains a scorer s : X→ R

How do we tell if s is “good”, or not?

We could look at either:

how accurate our derived classi�er is

if our scores discriminate the two classes

We’ll return to the �rst option later

13 / 53



Evaluating a scorer

Intuitively, s is bad if it scores instances with y = 0 higher than
those with y = 1

We might measure this using the pairwise-disagreement:

PD(s) =
1

N0 ·N1
∑

n : yn=1
∑

m : ym=0
1[s(xn)< s(xm)]

where Ni = # instances with yn = i

fraction of positives scored below negatives

14 / 53



Evaluating a scorer

Intuitively, s is bad if it scores instances with y = 0 higher than
those with y = 1

We might measure this using the pairwise-disagreement:

PD(s) =
1

N0 ·N1
∑

n : yn=1
∑

m : ym=0
1[s(xn)< s(xm)]

where Ni = # instances with yn = i

fraction of positives scored below negatives

14 / 53



Evaluating a scorer
(X, Y) = load_digits(return_X_y = True)

...

XTr, XTe, YTr, YTe = train_test_split(X, (Y % 2 == 0).
astype(int), random_state = 42)

lrn = LogisticRegression()
lrn.fit(XTr, YTr)

1 - roc_auc_score(YTe, lrn.decision_function(XTe))

We get a pairwise disagreement of 2.6%: very good!

15 / 53



Evaluating a scorer
(X, Y) = load_digits(return_X_y = True)

...

XTr, XTe, YTr, YTe = train_test_split(X, (Y % 2 == 0).
astype(int), random_state = 42)

lrn = LogisticRegression()
lrn.fit(XTr, YTr)

1 - roc_auc_score(YTe, lrn.decision_function(XTe))

We get a pairwise disagreement of 2.6%: very good!

15 / 53



Evaluating a scorer
We get a di�erent answer if we use pairwise disagreement to
evaluate the classi�er:
(X, Y) = load_digits(return_X_y = True)

...

XTr, XTe, YTr, YTe = train_test_split(X, (Y % 2 == 0).
astype(int), random_state = 42)

lrn = LogisticRegression()
lrn.fit(XTr, YTr)

1 - roc_auc_score(YTe, lrn.predict(XTe))

We get a pairwise disagreement of 6.7% 6= 2.6%!

16 / 53



Evaluating a scorer
We get a di�erent answer if we use pairwise disagreement to
evaluate the classi�er:
(X, Y) = load_digits(return_X_y = True)

...

XTr, XTe, YTr, YTe = train_test_split(X, (Y % 2 == 0).
astype(int), random_state = 42)

lrn = LogisticRegression()
lrn.fit(XTr, YTr)

1 - roc_auc_score(YTe, lrn.predict(XTe))

We get a pairwise disagreement of 6.7% 6= 2.6%!

16 / 53



Evaluating models: summary
The general principle for evaluation is:

Our model should discriminate between the two classes

The precise meaning of “discriminate” varies:

Classi�ers misclassi�cation error

Probability-estimators log-loss

Scorers pairwise disagreement

17 / 53



Roadmap

We’ll look at how classi�cation can be useful in:

predicting rare events

imputing missing data (by creating features)

generating images (by creating labels)

18 / 53



Roadmap

We’ll look at how classi�cation can be useful in:

predicting rare events

imputing missing data (by creating features)

generating images (by creating labels)

18 / 53



Application: imbalanced learning



Putting our skills to the test

Suppose we are approached by a marketing company

They want to know which people to send promotional �iers to

They o�er us historical data on people who were sent �iers,
and whether or not they responded

Natural thought: train a classi�er!

19 / 53



Putting our skills to the test

Suppose we are approached by a marketing company

They want to know which people to send promotional �iers to

They o�er us historical data on people who were sent �iers,
and whether or not they responded

Natural thought: train a classi�er!

19 / 53



Putting our skills to the test

Suppose we are approached by a marketing company

They want to know which people to send promotional �iers to

They o�er us historical data on people who were sent �iers,
and whether or not they responded

Natural thought: train a classi�er!

19 / 53



Putting our skills to the test

Suppose we are approached by a marketing company

They want to know which people to send promotional �iers to

They o�er us historical data on people who were sent �iers,
and whether or not they responded

Natural thought: train a classi�er!

19 / 53



Putting our skills to the test

M = loadmat(’kddcup98.mat’);
X = M[’X’]
Y = M[’Y’].flatten()
XTr, XTe, YTr, YTe = train_test_split(X, Y, random_state

= 42, test_size = 0.20)

lrn = LogisticRegression()
lrn.fit(XTr, YTr)
1 - accuracy_score(YTe, lrn.predict(XTe))

We get a misclassi�cation error of 5.0%: very good!

20 / 53



Putting our skills to the test

M = loadmat(’kddcup98.mat’);
X = M[’X’]
Y = M[’Y’].flatten()
XTr, XTe, YTr, YTe = train_test_split(X, Y, random_state

= 42, test_size = 0.20)

lrn = LogisticRegression()
lrn.fit(XTr, YTr)
1 - accuracy_score(YTe, lrn.predict(XTe))

We get a misclassi�cation error of 5.0%: very good!

20 / 53



Putting our skills to the test

We con�dently present our classi�er to the company

Unfortunately, a week later, they irately �re us

21 / 53



Putting our skills to the test

We con�dently present our classi�er to the company

Unfortunately, a week later, they irately �re us

21 / 53



That’s all they wrote
When asked why they are unhappy, the company responds:

0.00 0.25 0.50 0.75 1.00
Prediction

0

10000

20000

30000

40000

Fr
eq

ue
nc

y

We ended up predicting that no one should be sent a �ier!

22 / 53



That’s all they wrote
When asked why they are unhappy, the company responds:

0.00 0.25 0.50 0.75 1.00
Prediction

0

10000

20000

30000

40000
Fr

eq
ue

nc
y

We ended up predicting that no one should be sent a �ier!

22 / 53



That’s all they wrote
When asked why they are unhappy, the company responds:

0.00 0.25 0.50 0.75 1.00
Prediction

0

10000

20000

30000

40000
Fr

eq
ue

nc
y

We ended up predicting that no one should be sent a �ier!
22 / 53



Evaluating a classi�er: revisited
Recall that we proposed to compute:

ERR(c) =
1
N

N

∑
n=1

1[yn 6= c(xn)]

Suppose that most yn = 0, e.g., most people don’t respond

If we always predicted c(x) = 0, we would �nd:

ERR(c) =
N1

N
,

where N1 is the # of instances with yn = 1

Since N1� N, the error rate will be very low!

23 / 53



Evaluating a classi�er: revisited
Recall that we proposed to compute:

ERR(c) =
1
N

N

∑
n=1

1[yn 6= c(xn)]

Suppose that most yn = 0, e.g., most people don’t respond

If we always predicted c(x) = 0, we would �nd:

ERR(c) =
N1

N
,

where N1 is the # of instances with yn = 1

Since N1� N, the error rate will be very low!

23 / 53



Evaluating a classi�er: revisited
Recall that we proposed to compute:

ERR(c) =
1
N

N

∑
n=1

1[yn 6= c(xn)]

Suppose that most yn = 0, e.g., most people don’t respond

If we always predicted c(x) = 0, we would �nd:

ERR(c) =
N1

N
,

where N1 is the # of instances with yn = 1

Since N1� N, the error rate will be very low!

23 / 53



Evaluating a classi�er: revisited
Recall that we proposed to compute:

ERR(c) =
1
N

N

∑
n=1

1[yn 6= c(xn)]

Suppose that most yn = 0, e.g., most people don’t respond

If we always predicted c(x) = 0, we would �nd:

ERR(c) =
N1

N
,

where N1 is the # of instances with yn = 1

Since N1� N, the error rate will be very low!

23 / 53



Per-class misclassi�cation error

Intuitively, a trivial classi�er is bad because it does not
discriminate between the classes

To unwrap this, we could compute the per-class error rates,

ERR1(c) =
1

N1
∑

n : yn=1
1[yn 6= c(xn)]

ERR0(c) =
1

N0
∑

n : yn=0
1[yn 6= c(xn)]

These are known as the false negative and false positive rates

24 / 53



Per-class misclassi�cation error

Intuitively, a trivial classi�er is bad because it does not
discriminate between the classes

To unwrap this, we could compute the per-class error rates,

ERR1(c) =
1

N1
∑

n : yn=1
1[yn 6= c(xn)]

ERR0(c) =
1

N0
∑

n : yn=0
1[yn 6= c(xn)]

These are known as the false negative and false positive rates

24 / 53



Per-class misclassi�cation error

Intuitively, a trivial classi�er is bad because it does not
discriminate between the classes

To unwrap this, we could compute the per-class error rates,

ERR1(c) =
1

N1
∑

n : yn=1
1[yn 6= c(xn)]

ERR0(c) =
1

N0
∑

n : yn=0
1[yn 6= c(xn)]

These are known as the false negative and false positive rates

24 / 53



Weighted misclassi�cation error

Standard misclassi�cation error is:

ERR(c) = p ·ERR1(c)+(1−p) ·ERR0(c),

where p = N1
N is the fraction of instances with yn = 1

Problem arises because p� 0.5!

Consider instead a cost-weighted error

ERR(c) = w ·ERR1(c)+(1−w) ·ERR0(c),

for w ∈ [0,1] the relative importance of per-class errors

25 / 53



Weighted misclassi�cation error

Standard misclassi�cation error is:

ERR(c) = p ·ERR1(c)+(1−p) ·ERR0(c),

where p = N1
N is the fraction of instances with yn = 1

Problem arises because p� 0.5!

Consider instead a cost-weighted error

ERR(c) = w ·ERR1(c)+(1−w) ·ERR0(c),

for w ∈ [0,1] the relative importance of per-class errors

25 / 53



Weighted misclassi�cation error

Standard misclassi�cation error is:

ERR(c) = p ·ERR1(c)+(1−p) ·ERR0(c),

where p = N1
N is the fraction of instances with yn = 1

Problem arises because p� 0.5!

Consider instead a cost-weighted error

ERR(c) = w ·ERR1(c)+(1−w) ·ERR0(c),

for w ∈ [0,1] the relative importance of per-class errors

25 / 53



Putting our skills to the test: revisited

C = confusion_matrix(YTe, lrn.predict(XTe))
w = 0.5
w * C[0,1] + (1 - w) * C[1,1]

We get a weighted error rate of 50%: that sounds very bad!

We might now use this measure to compare di�erent classi�ers

More abstractly, we are summarising a confusion matrix

26 / 53



Putting our skills to the test: revisited

C = confusion_matrix(YTe, lrn.predict(XTe))
w = 0.5
w * C[0,1] + (1 - w) * C[1,1]

We get a weighted error rate of 50%: that sounds very bad!

We might now use this measure to compare di�erent classi�ers

More abstractly, we are summarising a confusion matrix

26 / 53



Putting our skills to the test: revisited

C = confusion_matrix(YTe, lrn.predict(XTe))
w = 0.5
w * C[0,1] + (1 - w) * C[1,1]

We get a weighted error rate of 50%: that sounds very bad!

We might now use this measure to compare di�erent classi�ers

More abstractly, we are summarising a confusion matrix

26 / 53



Putting our skills to the test: revisited

C = confusion_matrix(YTe, lrn.predict(XTe))
w = 0.5
w * C[0,1] + (1 - w) * C[1,1]

We get a weighted error rate of 50%: that sounds very bad!

We might now use this measure to compare di�erent classi�ers

More abstractly, we are summarising a confusion matrix

26 / 53



Putting our skills to the test

We could also try to evaluate our underlying scorer:
M = loadmat(’kddcup98.mat’);

...

lrn = LogisticRegression()
lrn.fit(XTr, YTr)
1 - roc_auc_score(YTe, lrn.decision_function(XTe))

We get a pairwise disagreement of 38.2%: not great, but not
trivial either!

27 / 53



Putting our skills to the test

We could also try to evaluate our underlying scorer:
M = loadmat(’kddcup98.mat’);

...

lrn = LogisticRegression()
lrn.fit(XTr, YTr)
1 - roc_auc_score(YTe, lrn.decision_function(XTe))

We get a pairwise disagreement of 38.2%: not great, but not
trivial either!

27 / 53



Distribution of scores
There is a slight gap between y = 1 and y = 0 amongst the scores

6 4 2 0
0.00

0.25

0.50

0.75

1.00
y = 1
y = 0

But also note that all the scores are < 0!

we are picking a bad threshold to form a classi�er!

28 / 53



Distribution of scores
There is a slight gap between y = 1 and y = 0 amongst the scores

6 4 2 0
0.00

0.25

0.50

0.75

1.00
y = 1
y = 0

But also note that all the scores are < 0!

we are picking a bad threshold to form a classi�er!
28 / 53



ROC curves
Given a scorer s, we could make a classi�er ct using any t ∈ R:

ct(x) = 1[s(x)> t]

The ROC curve is a plot of the resulting false versus true
positives, as t is varied:

{(ERR0(ct),1−ERR1(ct)) : t ∈ R}

This is a graphical summary of all possible classi�ers we could
obtain by thresholding s

29 / 53



ROC curves
Given a scorer s, we could make a classi�er ct using any t ∈ R:

ct(x) = 1[s(x)> t]

The ROC curve is a plot of the resulting false versus true
positives, as t is varied:

{(ERR0(ct),1−ERR1(ct)) : t ∈ R}

This is a graphical summary of all possible classi�ers we could
obtain by thresholding s

29 / 53



ROC curves
Given a scorer s, we could make a classi�er ct using any t ∈ R:

ct(x) = 1[s(x)> t]

The ROC curve is a plot of the resulting false versus true
positives, as t is varied:

{(ERR0(ct),1−ERR1(ct)) : t ∈ R}

This is a graphical summary of all possible classi�ers we could
obtain by thresholding s

29 / 53



ROC curves: example
fpr, tpr, thresholds = roc_curve(YTe, lrn.

decision_function(XTe), pos_label = 1)
plt.plot(fpr, tpr, ’.-’, markersize = 12);

0.00 0.25 0.50 0.75 1.00
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Any point on this curve corresponds to a single classi�er ct

30 / 53



ROC curves: example
fpr, tpr, thresholds = roc_curve(YTe, lrn.

decision_function(XTe), pos_label = 1)
plt.plot(fpr, tpr, ’.-’, markersize = 12);

0.00 0.25 0.50 0.75 1.00
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Trivial “always negative” classi�er: weighted error 50%

30 / 53



ROC curves: example
fpr, tpr, thresholds = roc_curve(YTe, lrn.

decision_function(XTe), pos_label = 1)
plt.plot(fpr, tpr, ’.-’, markersize = 12);

0.00 0.25 0.50 0.75 1.00
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Better classi�er: weighted error 36%

30 / 53



ROC and pairwise disagreement
It turns out that pairwise disagreement is one minus the area
under the ROC curve

Intuitively, average performance of collection {ct : t ∈ R}

0.00 0.25 0.50 0.75 1.00
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

31 / 53



ROC and pairwise disagreement
It turns out that pairwise disagreement is one minus the area
under the ROC curve

Intuitively, average performance of collection {ct : t ∈ R}

0.00 0.25 0.50 0.75 1.00
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

31 / 53



ROC and pairwise disagreement
It turns out that pairwise disagreement is one minus the area
under the ROC curve

Intuitively, average performance of collection {ct : t ∈ R}

0.00 0.25 0.50 0.75 1.00
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

31 / 53



Roadmap

We’ll look at how classi�cation can be useful in:

predicting rare events

imputing missing data (by creating features)

generating images (by creating labels)

32 / 53



Roadmap

We’ll look at how classi�cation can be useful in:

predicting rare events

imputing missing data (by creating features)

generating images (by creating labels)

32 / 53



Application: matrix factorisation



Item response modelling

Suppose an education board approaches us with results from
their latest exam

The examiners prepared a number of di�erent questions

Each student was give a di�erent subset of these questions

They want to standardise performance across students

33 / 53



Item response modelling

Suppose an education board approaches us with results from
their latest exam

The examiners prepared a number of di�erent questions

Each student was give a di�erent subset of these questions

They want to standardise performance across students

33 / 53



Item response modelling

Suppose an education board approaches us with results from
their latest exam

The examiners prepared a number of di�erent questions

Each student was give a di�erent subset of these questions

They want to standardise performance across students

33 / 53



Item response modelling

Suppose an education board approaches us with results from
their latest exam

The examiners prepared a number of di�erent questions

Each student was give a di�erent subset of these questions

They want to standardise performance across students

33 / 53



Item response modelling: goal
How to account for the fact that some students may have
gotten an easy batch of questions?

34 / 53



Item response modelling: strategy
We want to predict how well a student would do on all other
questions they weren’t asked

35 / 53



Item response modelling: input

Our observed data comprises triplets of the form (student ID,
question ID, correct?)

Compactly, {(xn,yn)}N
n=1, where xn = (sn,qn) and yn ∈ {0,1}

We want a classi�er c : X→{0,1}

use this to predict unseen (student, question) outcomes

36 / 53



Item response modelling: input

Our observed data comprises triplets of the form (student ID,
question ID, correct?)

Compactly, {(xn,yn)}N
n=1, where xn = (sn,qn) and yn ∈ {0,1}

We want a classi�er c : X→{0,1}

use this to predict unseen (student, question) outcomes

36 / 53



Item response modelling: input

Our observed data comprises triplets of the form (student ID,
question ID, correct?)

Compactly, {(xn,yn)}N
n=1, where xn = (sn,qn) and yn ∈ {0,1}

We want a classi�er c : X→{0,1}

use this to predict unseen (student, question) outcomes

36 / 53



Constructing a classi�er

Our inputs xn may just be numeric IDs

e.g., we don’t know anything about students apart from their
student number

using this as a raw feature isn’t intuitive

How can we construct a classi�er without any features?!

We can try to learn good features from the data!

37 / 53



Constructing a classi�er

Our inputs xn may just be numeric IDs

e.g., we don’t know anything about students apart from their
student number

using this as a raw feature isn’t intuitive

How can we construct a classi�er without any features?!

We can try to learn good features from the data!

37 / 53



Constructing a classi�er

Our inputs xn may just be numeric IDs

e.g., we don’t know anything about students apart from their
student number

using this as a raw feature isn’t intuitive

How can we construct a classi�er without any features?!

We can try to learn good features from the data!

37 / 53



Constructing a classi�er
Construct classi�er c via probability-estimator

Recall that logistic regression posits:

P(y = 1 | x) = 1
1+ e−wTx

For x = (s,q), we can posit:

P(y = 1 | x) = 1

1+ e−usTvq

Here, us and vq are learned features for the student and
question respectively

38 / 53



Constructing a classi�er
Construct classi�er c via probability-estimator

Recall that logistic regression posits:

P(y = 1 | x) = 1
1+ e−wTx

For x = (s,q), we can posit:

P(y = 1 | x) = 1

1+ e−usTvq

Here, us and vq are learned features for the student and
question respectively

38 / 53



Constructing a classi�er
Construct classi�er c via probability-estimator

Recall that logistic regression posits:

P(y = 1 | x) = 1
1+ e−wTx

For x = (s,q), we can posit:

P(y = 1 | x) = 1

1+ e−usTvq

Here, us and vq are learned features for the student and
question respectively

38 / 53



Constructing a classi�er
Construct classi�er c via probability-estimator

Recall that logistic regression posits:

P(y = 1 | x) = 1
1+ e−wTx

For x = (s,q), we can posit:

P(y = 1 | x) = 1

1+ e−usTvq

Here, us and vq are learned features for the student and
question respectively

38 / 53



Training the probability-estimator
For �xed question features vq,

P(y = 1 | x) = 1

1+ e−usTvq

is a logistic model with features vq and parameters us!

Similarly for �xed student features us, we are �tting a logistic
model with features us and parameters vq

We can �t the model by alternating optimisation:

�x {us}, and then �t {vq} via logistic regression

�x {vq}, and then �t {us} via logistic regression

iterate till convergence

39 / 53



Training the probability-estimator
For �xed question features vq,

P(y = 1 | x) = 1

1+ e−usTvq

is a logistic model with features vq and parameters us!

Similarly for �xed student features us, we are �tting a logistic
model with features us and parameters vq

We can �t the model by alternating optimisation:

�x {us}, and then �t {vq} via logistic regression

�x {vq}, and then �t {us} via logistic regression

iterate till convergence

39 / 53



Training the probability-estimator
For �xed question features vq,

P(y = 1 | x) = 1

1+ e−usTvq

is a logistic model with features vq and parameters us!

Similarly for �xed student features us, we are �tting a logistic
model with features us and parameters vq

We can �t the model by alternating optimisation:

�x {us}, and then �t {vq} via logistic regression

�x {vq}, and then �t {us} via logistic regression

iterate till convergence

39 / 53



Matrix factorisation view
This can also be understood as a form of nonlinear matrix
factorisation (c.f. PCA)

Compared to e.g. PCA, account for missing data

40 / 53



Matrix factorisation view
This can also be understood as a form of nonlinear matrix
factorisation (c.f. PCA)

Compared to e.g. PCA, account for missing data

40 / 53



Other applications
Same idea applicable for recommender systems

41 / 53



Roadmap

We’ll look at how classi�cation can be useful in:

predicting rare events

imputing missing data (by creating features)

generating images (by creating labels)

42 / 53



Roadmap

We’ll look at how classi�cation can be useful in:

predicting rare events

imputing missing data (by creating features)

generating images (by creating labels)

42 / 53



Application: GANs



Generative models
Suppose we want a model that can generate images

e.g., from Nintendo game backgrounds

to the background for a new game

From https://medium.com/@ageitgey/
abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

43 / 53

https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7
https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7


Generative models
Suppose we want a model that can generate images

e.g., from Nintendo game backgrounds

to the background for a new game

From https://medium.com/@ageitgey/
abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

43 / 53

https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7
https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7


Generative models
Suppose we want a model that can generate images

e.g., from Nintendo game backgrounds

to the background for a new game

From https://medium.com/@ageitgey/
abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

43 / 53

https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7
https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7


Generative models: formally

We are given a set of instances {xn}N
n=1, e.g., images

We want a generator g : Z→ X

We then draw samples {g(zm)}M
m=1, for random seed vectors zm

44 / 53



Generative models: formally

We are given a set of instances {xn}N
n=1, e.g., images

We want a generator g : Z→ X

We then draw samples {g(zm)}M
m=1, for random seed vectors zm

44 / 53



Generative models: formally

We are given a set of instances {xn}N
n=1, e.g., images

We want a generator g : Z→ X

We then draw samples {g(zm)}M
m=1, for random seed vectors zm

44 / 53



Classi�cation problem?

There are no labels available as input

Hence, we can’t possibly treat this as a classi�cation problem

Unless we create some labels ourselves!

45 / 53



Classi�cation problem?

There are no labels available as input

Hence, we can’t possibly treat this as a classi�cation problem

Unless we create some labels ourselves!

45 / 53



Classi�cation problem?

There are no labels available as input

Hence, we can’t possibly treat this as a classi�cation problem

Unless we create some labels ourselves!

45 / 53



A classi�cation perspective

We are given a set of instances {xn}N
n=1, e.g., images

Suppose we have generator g : Z→ X, and we draw {g(zm)}M
m=1

How do we tell if g is good, or not?

Find a classi�er to distinguish between {xn}N
n=1 and {g(zm)}M

m=1!

if a powerful classi�er can’t tell the di�erence, then probably
humans can’t either!

46 / 53



A classi�cation perspective

We are given a set of instances {xn}N
n=1, e.g., images

Suppose we have generator g : Z→ X, and we draw {g(zm)}M
m=1

How do we tell if g is good, or not?

Find a classi�er to distinguish between {xn}N
n=1 and {g(zm)}M

m=1!

if a powerful classi�er can’t tell the di�erence, then probably
humans can’t either!

46 / 53



A classi�cation perspective

We are given a set of instances {xn}N
n=1, e.g., images

Suppose we have generator g : Z→ X, and we draw {g(zm)}M
m=1

How do we tell if g is good, or not?

Find a classi�er to distinguish between {xn}N
n=1 and {g(zm)}M

m=1!

if a powerful classi�er can’t tell the di�erence, then probably
humans can’t either!

46 / 53



A classi�cation perspective

We are given a set of instances {xn}N
n=1, e.g., images

Suppose we have generator g : Z→ X, and we draw {g(zm)}M
m=1

How do we tell if g is good, or not?

Find a classi�er to distinguish between {xn}N
n=1 and {g(zm)}M

m=1!

if a powerful classi�er can’t tell the di�erence, then probably
humans can’t either!

46 / 53



A classi�cation perspective

47 / 53



A training objective

Goal: �nd g whose outputs maximally confuse any classi�er!

Iteratively optimise generator until its results are
indistinguishable from the inputs

48 / 53



A training objective

Goal: �nd g whose outputs maximally confuse any classi�er!

Iteratively optimise generator until its results are
indistinguishable from the inputs

48 / 53



A training objective

Goal: �nd g whose outputs maximally confuse any classi�er!

Iteratively optimise generator until its results are
indistinguishable from the inputs

48 / 53



GANs summary
Can think of our procedure as a game between the generator
and a discriminator (classi�er)

Generative adversarial networks (GANs) implement this idea
with neural networks for the generator and discriminator

49 / 53



GANs summary
Can think of our procedure as a game between the generator
and a discriminator (classi�er)

Generative adversarial networks (GANs) implement this idea
with neural networks for the generator and discriminator

49 / 53



GAN examples

CAN: Creative Adversarial Networks Generating “Art” by Learning About Styles and Deviating from Style Norms. Elgammal et al.,
ICCC 2017.

50 / 53



GAN examples

Image-to-Image Translation with Conditional Adversarial Networks. Isola et al., CVPR 2017.
51 / 53



Final thoughts



Summary

Three views of classi�cation

Evaluating classi�ers

How classi�cation can be useful in:

predicting rare events

imputing missing data (by creating features)

generating images (by creating labels)

52 / 53



Today’s lesson
All roads lead to binary classi�cation

Binary 
classification

But we need to be careful in de�ning what “classi�cation” is!

53 / 53



Today’s lesson
All roads lead to binary classi�cation

Binary 
classification

But we need to be careful in de�ning what “classi�cation” is!
53 / 53


	Evaluating models
	Application: imbalanced learning
	Application: matrix factorisation
	Application: GANs
	Final thoughts

