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Nash-equilibrium

I Refers to a special kind of state in an n-player game
I No player has an incentive to unilaterally deviate from his

current strategy
I A kind of “stable” solution

I Existence depends on the type of game
I If strategies are “pure” i.e. deterministic, does not have to

exist in the game
I If strategies are “mixed” i.e. probabilistic, then it always exists

I Yet how do we find it!?!
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Notation

I Suppose that player p follows the mixed strategy
xp = (xp1, . . . , xpnp)

I The ith entry gives the probability that player p plays move i

I Let x := (x1, . . . , xn) be the collection of strategies for all
players

I Let the function Up(x) denote the expected utility or payoff
that player p gets when each player uses the strategy dictated
in x:

Up(x) =
∑

s

x1(s1) . . . xn(sn)up(s1, . . . , sn)

I up(s1, . . . , sn) is the (deterministic) utility for player p when
player q plays sq



Formal definition

I We say that x∗ = (x1
∗, . . . , xn

∗) is a Nash equilibrium if...
I “No player has an incentive to unilaterally deviate from his

current strategy”

I If player p decides to switch to a strategy yp, then write the
resulting strategy set as x−p; yp

I So, x∗ is a N.E. if, for every player p, and for any mixed
strategy yp for that player, we have

Up(x
∗) ≥ Up(x

∗
−p; yp)

I A more symmetric version:

Up(x
∗
−p; x

∗
p) ≥ Up(x

∗
−p; yp)



Questions about finding Nash equilibria

I Proof of existence was via a fixed point theorem
I Non-constructive

I So how do we find it?
I And can we find it efficiently?



Complexity of the problem

I NASH does not fall into a standard complexity class

I Need to define a special class, PPAD, for this problem

I Turns out that finding the Nash-equilibrium is PPAD-complete



What about NP?

I Probably not NP-complete
I The decision version is in P

I Why?

I Because the equilibrium always exists!
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The class TFNP

I Suppose we have a set of polynomial-time computable binary
predicates P(x , y) where

(∀x)(∃y) : P(x , y) = TRUE

I Problems in TFNP: Given an x , find a y so that P(x , y) is
TRUE

I Can be thought of as “NP search problems where a solution is
guaranteed”

I Subclasses defined based on how we decide (∃y) : P(x , y) is
TRUE



PPAD in terms of TFNP

I PPAD is defined by the following (complete) problem:

Problem

Suppose we have an exponential-size directed graph G = (V ,E ),
where the in-degree and out-degree of each node is at most 1.
Given any node v ∈ V , suppose we have a polynomial-time
algorithm that finds the neighbours of v . Now suppose we are
given a leaf node w - output another leaf node w ′ 6= w .

I Existence of another leaf node is guaranteed by the parity
argument

I Hence the name



Polynomial parity argument

Theorem

Every graph has an even number of odd-degree nodes

I Proof: Let W = {v ∈ V : v has odd degree }

2|E | =
∑
v∈W

deg(v) +
∑
v /∈W

deg(v)

=
∑
v∈W

odd + even

I Corollary: If a graph has maximum degree 2, then it must
have an even number of leaves
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PPAD-completeness

I Some other PPAD complete problems are...
I Finding a Sperner triangle
I Finding a Brouwer fixed point
I And finding a Nash equilibrium!



Completeness of finding Nash equilibrium

I Finding a Nash equilibrium is PPAD-complete
I For 4-player games... [3]

I ...and 3-player games... [1, 7]
I ...and even for 2-player games! [2]

I So finding the Nash equilibrium even for 2-player games is no
easier than doing it for n-players!

I At the moment, however, not much known about how “hard”
a class PPAD is

I i.e. Where does it lie w.r.t. P?
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Approaches to finding equilibria

I No P algorithms known!

I Most approaches are based on solving non-linear programs
(for general n)

I Completeness result means even 2-player games are not (yet)
“easy” to solve

I One of the earliest algorithms for finding equilibria in 2-player
games: Lemke-Howson algorithm



Lemke-Howson algorithm

I An algorithm for finding the Nash equilibrium for a game with
2 players [16, 14]

I Developed in 1964
I Independent proof of why equilibrium must exist

I Worst-case exponential time [13], but in practise quite good
performance



How we proceed

I We need to redefine a Nash equilibrium for 2-players
I Try and make a graph that lets us find equilibria easily

I Exploiting the convenience of the alternate definition



Utility for 2-players

I Suppose that for a 2-player game, we have the mixed
strategies x = (s, t)

I Label the strategies by I = {1, . . . ,m} for player 1, and
J = {m + 1, . . . ,m + n} for player 2

I Expected utility for player p must be

Up(x) =
∑

i

∑
j

Pr[player 1 chooses i ]× Pr[player 2 chooses j ]

× Payoff for player p when 1 plays i and 2 plays j

=
∑

i

∑
j

s(i)t(j)up(i , j)

= s.(upt)



Nash equilibria for two players

I We call x∗ = (s∗, t∗) a Nash equilibrium iff

(∀s)
∑

i

∑
j

s∗(i)t∗(j)u1(i , j) ≥
∑

i

∑
j

s(i)t∗(j)u1(i , j)

(∀t)
∑

i

∑
j

s∗(i)t∗(j)u2(i , j) ≥
∑

i

∑
j

s∗(i)t(j)u2(i , j)



A useful claim

Claim

If in a Nash equilibrium player p can play strategy i (non-zero
probability), then strategy i is a best-response strategy

I Mathematically,

s∗(i) > 0 =⇒ (∀i0)
∑

j

t∗(j)u1(i , j) ≥
∑

j

t∗(j)u1(i0, j) (1)

t∗(j) > 0 =⇒ (∀j0)
∑

i

s∗(i)u2(i , j) ≥
∑

i

s∗(i)u2(i , j0) (2)
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Proof?

I We need a lemma to prove this

I We show that it is sufficient that we simply beat pure
strategies of other players



Lemma

Lemma

Let πp,i denote the “mixed” strategy (0, . . . , 1, . . . , 0) i.e. we
deterministically choose strategy i for player p. Then, x is a Nash
Equilibrium iff

(∀p, πp,i)Up(x) ≥ Up(x−p;πp,i)

I Proof: (note that =⇒ direction is by definition)

Up(x−p; yp) =
∑
ip

yp(ip)

{∑
i1...in

x1(i1) . . . xn(in)up(x−p;πp,ip)

}
=

∑
ip

yp(ip)Up(x−p;πp,ip)

≤
∑
ip

yp(ip)Up(x)

≤ Up(x) since
∑

yp(i) = 1



Lemma

Lemma

Let πp,i denote the “mixed” strategy (0, . . . , 1, . . . , 0) i.e. we
deterministically choose strategy i for player p. Then, x is a Nash
Equilibrium iff

(∀p, πp,i)Up(x) ≥ Up(x−p;πp,i)

I Proof: (note that =⇒ direction is by definition)

Up(x−p; yp) =
∑
ip

yp(ip)

{∑
i1...in

x1(i1) . . . xn(in)up(x−p;πp,ip)

}
=

∑
ip

yp(ip)Up(x−p;πp,ip)

≤
∑
ip

yp(ip)Up(x)

≤ Up(x) since
∑

yp(i) = 1



Proof of claim

I Use the lemma: Up(x∗) ≥ Up(x−p;πp,i)

Up(x
∗) =

∑
x∗p(i)Up(x

∗
−p;πp,i)

≤
∑

x∗p(i)Up(x
∗)

= Up(x
∗) since

∑
x∗p(i) = 1

I So, we deduce that∑
x∗p(i)Up(x

∗) =
∑

x∗p(i)Up(x
∗
−p;πp,i)

I Taking terms to one side,

x∗p(i) > 0 =⇒ Up(x
∗) = Up(x

∗
−p;πp,i)



Reformulation of Nash equilibrium - I

I So, x∗ is a Nash equilibrium iff
I For player 1, equation 1 holds or Pr[strategy i ] = 0
I For player 2, equation 2 holds or Pr[strategy j ] = 0



Reformulation of Nash equilibrium - II

I Define

S i = {s : s(i) = 0},S j =

{
s :

∑
i

s(i)u2(i , j) ≥
∑

i

s(i)u2(i , j0)

}

T j = {t : t(j) = 0},T i =

t :
∑

j

t(j)u1(i , j) ≥
∑

j

t(j)u1(i0, j)


I Then, x∗ is a Nash equilibrium iff

(∀i)s ∈ S i ∨ t ∈ T i

(∀j)s ∈ S j ∨ t ∈ T j



Labelling

I We are claiming that x = (s, t) is an equilibrium iff...
I For any k ∈ I ∪ J, either s or t (or maybe both) is in the

appropriate region Sk or T k

I Can think of these k’s as labels of strategies
I Labels(s) = {k ∈ I ∪ J : s ∈ Sk}
I Labels(t) = {k ∈ I ∪ J : t ∈ T k}



Reformulation of Nash equilibrium - III

I Natural label for x = Labels(s)∪ Labels(t)

I So, x is a Nash equilibrium iff it is completely labelled



Strategy simplex

I m strategies =⇒ valid strategy space is an (m − 1)
dimensional simplex

(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

(0, 0, 0)

I With labelling, we can split up the simplex into regions



Labelling - example

I For the payoff matrix A = [0 6; 2 5; 3 3]

I Label the strategy space for player 2:

1, 4

1, 2

2, 3

3, 5

4

5

(
1
3
, 2

3

)

(
2
3
, 1

3

)

(1, 0)

(0, 1)



Reformulation of problem

I Using the labelling definition, x is a Nash equilibrium iff it is
completely labelled

I New problem: How do we find points that are completely
labelled?



High-level solution

I Think of the space as a graph
I Vertices should correspond to strategy pairs
I Edges correspond to some change in the strategies

I We want to move from some starting pair to an equilibrium
I So, we need to carefully choose edges

I Edges should define some special change in the strategies
I Should make it easy to find equilibria

I Problem: How do we make such a graph?
I What is a good rule for making edges?



Graph construction

I Form the graphs GS = (VS ,ES), GT = (VT ,ET ) where:
I VS ← {s ∈ Rm

+ : s is inside the simplex, and s has exactly m
labels }

I Edge between s1, s2 if they differ in exactly one label
I Similarly for VT ,ET

I Note: This is now “filling” the strategy simplex



Example

I Payoff B = [1 0; 0 2; 4 3]

(0, 0, 0) (1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(
2
3
, 1

3
, 0

)

(
0, 1

3
, 2

3

)

L = 1, 3, 5

L = 1, 2, 3

L = 1, 2, 4

L = 3, 4, 5

L = 1, 2, 4

L = 2, 3, 5



Why zero?

I Fact: Vertices lie on simplex, except for 0

I Zero is the only “non-strategy” vertex we select
I Why didn’t we just specify that

∑
si = 1?

I The value of zero will be revealed later!
I For now, notice that (0, 0) is completely labelled, but is not an

equilibrium...



Graph construction

I Form the product graph G = GS × GT

I V = {(s, t) : s ∈ VS , t ∈ VT}
I E = {(s1, t1)→ (s1, t2) : t1 → t2} ∪ {(s1, t1)→ (s2, t1) :

s1 → s2}
I Now we have vertices corresponding to pairs of mixed

strategies



Graph motivation

I We know that the equilibria are completely labelled

I We know that G must therefore contain the equilibria as
vertices

I We know that edges between vertices only modify one label

I Question: Can we traverse the graph so that we find an
equilibria?



Two important sets

I Define:
I L−(k) := vertices that have all labels except, possibly, k
I L := vertices that have all labels

I By definition, L ⊆ L−(k)
I L = (0, 0) ∪ {Equilibria}

I So we call (0, 0) the “pseudo” equilibrium

I We can prove some properties about these sets...



Fact 1

Fact

For any k, every member of L is adjacent to exactly one member
of L−(k)− L. That is, for any label, every (pseudo) equilibrium is
adjacent to exactly one strategy pair that is missing that label.

I Proof:
I Let (s, t) ∈ L. Then the label k must apply to either s or t, by

definition
I Suppose that s is labelled with k. Then, there must be an

edge between (s, t) and the point (s′, t) where s′ is missing the
label k

I There is only one such s′ that is missing the label k - hence
the neighbour is unique

I Similar argument if t is labelled with k
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Fact 2

Fact

For any k, every member of L−(k)− L is adjacent to exactly two
members of L−(k). That is, every strategy pair missing exactly one
label is adjacent to exactly two other strategy pairs that are
potentially missing the same label.

I Proof:
I Since
|Labels(s, t)| = m + n − 1 6= |Labels(s)|+ |Labels(t)| = m + n,
there must be a duplicate label, `

I In the graph GS , we must have an edge from s to some other
point s′, where s′ does not have the label `

I Then, the edge (s, t)→ (s′, t) must belong to E
I Similarly for GT - this means that the graph G has exactly two

edges that change the labelling
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Putting the facts together

I L−(k) describes a subgraph of G containing (disjoint) paths
and loops of G

I The endpoints of a path in G are (pseudo) equilibria
I Problem: How do we find this set quickly?

I Touch on this later



The value of zero

I We know that if we start at a (pseudo) equilibrium, we will
end up at a different (pseudo) equilibrium

I Now we are glad we added the pseudo equilibrium (0, 0)
I It gives us a constant, convenient starting point!
I Otherwise, only if we already knew an equilibrium could we

find another



Finding equilibria

I Start off at the pseudo-equilibrium (0, 0)

I Choose an arbitrary label ` ∈ I ∪ J

I Follow the path generated by the set L−(`)

I When we reach the end of the path, we will necessarily have
stopped at an equilibrium



Example

I Payoff matrices (from [16])

A =

0 6
2 5
3 3



B =

1 0
0 2
4 3


I Choose the label 2 to be dropped i.e. move along L−(2)



Example

I Start off at the artificial equilibrium, ((0, 0, 0), (0, 0))→ labels
{1, 2, 3}, {4, 5}

(
1
3
, 2

3

)

(
2
3
, 1

3

)

(1, 0)

(0, 1)

(0, 0)

(0, 0, 0) (1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(
2
3
, 1

3
, 0

)

(
0, 1

3
, 2

3

)

L = 1, 3, 5

L = 1, 2, 3

L = 1, 2, 4

L = 3, 4, 5

L = 1, 2, 4

L = 2, 3, 5

L = 4, 5

L = 1, 4

L = 1, 2

L = 2, 3

L = 3, 5



Example

I Step 1: ((0, 1, 0), (0, 0))→ labels {1, 3, 5}, {4, 5}; duplicate is
5

(
1
3
, 2

3

)

(
2
3
, 1

3

)

(1, 0)

(0, 1)

(0, 0)

(0, 0, 0) (1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(
2
3
, 1

3
, 0

)

(
0, 1

3
, 2

3

)

L = 1, 3, 5

L = 1, 2, 3

L = 1, 2, 4

L = 3, 4, 5

L = 1, 2, 4

L = 2, 3, 5

L = 4, 5

L = 1, 4

L = 1, 2

L = 2, 3

L = 3, 5



Example

I Step 2: ((0, 1, 0), (0, 1))→ labels {1, 3, 5}, {1, 4}; duplicate is
1

(
1
3
, 2

3

)

(
2
3
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3

)

(1, 0)

(0, 1)

(0, 0)

(0, 0, 0) (1, 0, 0)
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(0, 0, 1)

(
2
3
, 1

3
, 0

)

(
0, 1

3
, 2

3

)

L = 1, 3, 5

L = 1, 2, 3

L = 1, 2, 4

L = 3, 4, 5

L = 1, 2, 4

L = 2, 3, 5

L = 4, 5

L = 1, 4

L = 1, 2

L = 2, 3

L = 3, 5



Example

I Step 3: ((2
3 , 1

3 , 0), (0, 1))→ labels {3, 4, 5}, {1, 4}; duplicate is
4
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2
3
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3
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2
3
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3
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0, 1

3
, 2

3

)

L = 1, 3, 5

L = 1, 2, 3

L = 1, 2, 4

L = 3, 4, 5

L = 1, 2, 4

L = 2, 3, 5

L = 4, 5

L = 1, 4

L = 1, 2

L = 2, 3

L = 3, 5



Example

I Step 4: ((2
3 , 1

3 , 0), (1
3 , 2

3))→ labels {3, 4, 5}, {1, 2}

I Completely labelled, and so an equilibria

(
1
3
, 2

3

)

(
2
3
, 1

3

)
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(0, 1)

(0, 0)

(0, 0, 0) (1, 0, 0)
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2
3
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3
, 0
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0, 1

3
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3

)
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L = 1, 2, 3

L = 1, 2, 4

L = 3, 4, 5

L = 1, 2, 4

L = 2, 3, 5

L = 4, 5

L = 1, 4

L = 1, 2

L = 2, 3

L = 3, 5



Example

I Step 4: ((2
3 , 1

3 , 0), (1
3 , 2

3))→ labels {3, 4, 5}, {1, 2}
I Completely labelled, and so an equilibria

(
1
3
, 2

3

)

(
2
3
, 1

3

)

(1, 0)

(0, 1)

(0, 0)

(0, 0, 0) (1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(
2
3
, 1

3
, 0

)

(
0, 1

3
, 2

3

)

L = 1, 3, 5

L = 1, 2, 3

L = 1, 2, 4
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Algorithm summary

I Consider strategies in L−(`) that have all labels except, possibly,
some label `

I Clearly, every equilibrium belongs to this set
I So too does the pseudo equilibrium, (0, 0)

I Construct a graph from all such strategies

I Then, one can show:

I Each strategy missing a label is adjacent to exactly two such
strategies

I Each equilibrium is adjacent to only one strategy

I It follows that:

I Equilibria are endpoints of paths along L−(`) on the graph



Generating L−(`)

I Second problem...
I How do we find adjacent strategies?

I “Pivoting” approach
I Write problem as a matrix equation
I Labels correspond to zero entries in solution vector

I Able to implicitly generate the graph, on-the-fly

I Details in [16]!



Performance of Lemke-Howson

I Worst-case exponential running time
I In practise, reasonably fast
I c.f. Simplex algorithm

I Does not generalize to n > 2 players

I Sometimes, equilibria may be out of reach



Other approaches

I Many more techniques, of diverse types...
I Local-search techniques [11]
I Mixed integer programming [12]
I Computer algebra [8]
I Markov Random Fields [6]
I etc...

I Quite a few generalize to more than 2 players

I Nothing (as yet) tells us about the boundary of P!



Other avenues

I So finding a Nash equilibria is not currently easy
I It is not known how to do it in polynomial time

I What about an approximate solution?
I Hopefully, these may permit polynomial algorithms...



Approximate equilibria

I Standard definition of approximate equilibria is one of additive
error

I We call x∗ an ε-approximate Nash equilbria if, for every player
p and for any mixed strategy yp, we have

Up(x
∗) ≥ Up(x

∗
−p; yp)− ε

I We don’t lose more than ε by changing our current strategy

I A Nash equilibrium is a “0-approximate” Nash equilibrium



A useful fact

Fact

If a game with payoff matrices R,C has a Nash equilibria (s∗, t∗),
then the game αR + β, γC + δ has the same equilibria, for any
α, γ > 0, β, δ ∈ R.

I This means that we can normalize any game so that the
payoffs are between 0 and 1

I Makes some of the analysis simpler



Simple methods for constant ε

I Daskalakis [5] showed how to find a 1
2 -approximate equilibria

I Kontogiannis [9] gave a way to find a 3
4 -approximate

equilibria, and then a parametrized approximate equilibria

I Both in polynomial time!



A 1
2-approximate equilibria

I Say we have a two-player game, with payoff matrices R,C
(row, column) for players 1 and 2

I Pick an arbitrary strategy (row) for the first player - say i

I Define
j := argmaxj0 Cij0

k := argmaxk0
Rk0j

I j is the best-response for player 2
I k is the best-response to the best-response for player 1



A 1
2-approximate equilibria

Claim

The strategy-pair
(

πi+πk
2 , πj

)
is a 1

2 -approximate Nash equilibria.

I Proof:
I Row player’s payoff is s∗.(Rt∗) =

Rij+Rkj

2

I Column player’s payoff is s∗.(Ct∗) =
Cij+Ckj

2
I Row player’s incentive to deviate is

Rkj −
Rij + Rkj

2
≤ Rkj

2
≤ 1

2

I Column player’s incentive to deviate is

Cij′ + Ckj′

2
− Cij + Ckj

2
≤ Ckj′ − Ckj

2
≤ 1

2
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Parameterized approximation

I Kontogiannis [9] gave a simple way to find a 3
4 -approximate

equilibrium
I We look at how he finds a 2+λ

4 -approximate equilibrium
I λ ∈ [0, 1) (unfortunately!) not arbitrary

I Idea: Define a “good” pair of linear programs
I Equilibria solve the programs, but not necessarily optimally
I Relate optimal solution of LPs to Nash equilibria



Parameterized approximation

I Consider the linear programs

minimize p : minimize q :
(∀i)(Rt)i ≤ p (∀j)(sC )j ≤ q∑

tj = 1
∑

si = 1
t ≥ 0 s ≥ 0

I Solutions will be

t = argmin {maxi (Rt)i}

s = argmin {maxj(sC )j}



Another interesting property

Theorem

Suppose (s∗, t∗) is a Nash equilibrium. Then,

s∗.(Rt∗) = maxi (Rt∗)i

s∗.(Ct∗) = maxj(s
∗C )j

That is, the expected payoff for both players equals the maximal
payoff under pure strategies



Proof

I Follows easily from the linearity of the sum. Firstly,∑
s∗(i)(Rt∗)i ≤

∑
s∗(i)maxi (Rt∗)i = maxi (Rt∗)i

Secondly, let
i0 = argmaxi (Rt∗)i

and then the Nash property tells us∑
s∗(i)(Rt∗)i ≥

∑
πi0(i)(Rt∗)i = maxi (Rt∗)i



Optimal solutions to LPs

I Suppose the optimal solutions are (p0, t∗), (q0, s∗)

I That means for some r , c , the values are attained:

(Rt∗)r = p0

(s∗C )c = q0

I That is,
r = argmaxi (Rt∗)i

s = argmaxj(s
∗C )j



Equilibrium solutions to LPs

I Now consider the equilibria (s1, t1), (s2, t2), where...
I (s1, t1) gives the minimal payoff λ1 for player 1
I (s2, t2) gives the minimal payoff λ2 for player 2

I By the theorem, (λ1, t1) and (λ2, s2) are feasible solutions to
the corresponding LPs

I This is because e.g. maxi (Rt)i is the payoff for player 1

I As a consequence, p0, q0 ≤ λ = max{λ1, λ2}
I Equilibrium solution is not necessarily the optimal one



The strategy

I Use the strategies (s, t), with:

s(i) =
s∗(i)

2
, i 6= r

s(r) =
1

2
+

s∗(r)

2

t(j) =
t∗(j)

2
, j 6= c

t(c) =
1

2
+

t∗(c)

2

I We are boosting the “optimal” strategies

I Proof of 2+λ
4 -approximation follows easily



Some other results

I Daskalakis [4] gave a (1− φ) + ε ≈ 0.38 + ε approximate
equilibria algorithm

I Solving a linear system

I Tsaknakis [15] recently gave the best known result
I Finds a 1

3 -approximate equilibrium in polynomial time
I Based on a steepest descent
I Indicates why this might be a barrier value in terms of

complexity



Arbitrary ε?

I What about when ε is not fixed?

I Lipton [10] gave a simple algorithm for finding a sparse
approximate equilibria

I Based on sampling theory

I First sub-exponential algorithm known for arbitrary ε!
I Interesting result on the nature of approximate equilibria

I There is always an approximate equilibrium that is sparsely
populated



Sparse approximate equilibria

I Call a strategy uniform if the probability of all possible moves
(with non-zero probability) are equal

I Call the set of possible (non-zero) strategies the support of a
mixed strategy

Theorem

For any Nash equilibrium (s∗, t∗), and any c ≥ 12, there is an
ε-approximate equilibrium (s, t) such that s, t have support of size
c log n

ε2 , where both are uniform strategies, and this new strategy
pair approximates the payoffs in the equilibrium case:

|s.(Rt)− s∗.(Rt∗)| < ε

|s.(Ct)− s∗.(Ct∗)| < ε
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Proof idea

I Use the probabilistic method

I We want the probability that a randomly picked x, y will
satisfy

(|s.(Rt)− s∗.(Rt∗)| < ε) ∧ (|s.(Ct)− s∗.(Ct∗)| < ε)∧
(|πi.(Rt)− s.(Rt)| < ε) ∧ (|s.(Cπj)− s.(Ct)| < ε)

is positive, for any i , j



Proof idea

I Use the fact that e.g.

(|s∗.(Rt∗)− s.(Rt∗)| < ε/2) ∧ (s.(Rt∗)− |s.(Rt)| < ε/2)

=⇒ |s.(Rt)− s∗.(Rt∗)| < ε

I Can show e.g.

E [(s.(Rt∗))i ] = s∗.(Rt∗)

I Use standard concentration bounds for 0-1 variables to show

Pr [|s∗.(Rt∗)− s.(Rt∗)| ≥ ε/2] ≤ 2e−kε2/8

I End up with a sum of exponentially small terms, so that

Pr [Conditions fail] < 0



How do we use it?

I Suggests a simple algorithm for finding an ε-approximate,
sparse equilibria

I Just enumerate all possible k-uniform strategies for some fixed
k ≥ 12 log n

ε2

I Theorem guarantees that at least one of these strategies will
ε-approximate a Nash equilibrium

I To test the ε-approximation, check deviation to pure strategies

I Runtime is
(n+k−1

k

)2
= O

(
n2k

)
= O

(
nlog n/ε2

)
I Unordered selection, with repetition, of k things from n things
I This is a sub-exponential algorithm



Summary

I We don’t know how to find Nash equilibria in P time, in
general

I Even 2-player games are hard!
I We can solve 2-player games in “average” case polynomial

time
I e.g. Lemke-Howson algorithm

I Approximate-equilibria permit polynomial solutions
I (Some) Constant-approximations are in P
I General ε is sub-exponential at least

I Computing equilibria is an important problem in theoretical
CS!
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