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Movie rating prediction

Netflix prize: Given users’ ratings of movies they have seen,
predict ratings on the movies they have not seen

?

?

Popular solution is collaborative filtering
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Friends in social networks

Recommending friends: Given whether certain pairs of users
know each other, predict whether a new pair are likely to know
each other

Popular solutions are scores computed from graph topology
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Computational advertising

Response prediction: Given ads’ clickthrough rates on
webpages, predict clickthrough rate for an ad on a webpage it
has not been shown on

?

?

Popular solution is supervised learning with feature engineering
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Item response theory

Exam performance: Given student’s performance on questions
in an exam, predict performance on unanswered questions

Popular solution is ideal point model
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The general problem: dyadic prediction

General dyadic prediction: Given labels between certain pairs
of objects (or dyads), predict the labels for the unobserved dyads

I Possibly have feature vectors for the rows, columns, and cells
I A type of generalized matrix completion

Solution? Depends on problem instanation...
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A graph view: link prediction

Given a graph G with partially labelled edges
I Possibly have feature vectors for the nodes and edges

? ?
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Task: Predict labels for all edges
I No-Link 6= unknown label
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Dyadic prediction formally - I

Training set: {((ri, ci), yi)}Ni=1

I (ri, ci)→ dyad, yi → label
I ri ∈ {1, . . . ,m}, ci ∈ {1, . . . , n} represent member identities
I yi ∈ Y, e.g. {1, . . . , 5}

Auxiliary information: X1 ∈ Rm×d1 , X2 ∈ Rn×d2 , Z ∈ Rmn×d3

I Feature vectors describing dyad members and the dyads
I Optional to specify; can learn without them!

Output: Mapping f : {1, . . . ,m} × {1, . . . , n} → Y
I Given a new dyad, would like to predict the label

9 / 54



Dyadic prediction formally - II

For predicting edges in an undirected graph:
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Dyadic prediction: flexibility

Dyad members (r, c)?
I Same or different space

F Users and movies, or users and users in a social network
I Unique identifiers only, or feature vectors

F Netflix prize versus computational advertising

Labels y?
I Unordered (nominal) or ordered

F { Viewed, Purchased, Returned } or { 1, 2, . . . , 5 }
I Single or multi-label

F { Friend, Colleague, Family Member }
Structure of data?

I Undirected or directed graph
F Friendships versus trust relations in a social network
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This talk

A general dyadic prediction model that learns latent features
I Associate a “fingerprint” with each dyad/node in the graph
I Linking behaviour → interaction of these fingerprints

Main focus:
I Modelling disparate problems in a single framework
I Adapting to problem-specific constraints
I Focus on objectives other than accuracy
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Can logistic regression do the job?

Recall the logistic regression model:

Pr[y = 1|x;w] = σ(wTφ(x)),

where σ(z) = 1/(1 + e−z), and φ(·) is some transformation
Can we just let x = (r, c) and be done?

I Theoretically no, because the iid assumption fails
I But what exactly goes wrong?
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A limitation of logistic regression - I

Recall that r, c are identities of the dyad members
I Or in a graph, the source and destination
I Must represent them in a way logistic regression understands

A sensible encoding is a one-hot (one-of-K) scheme
I The resulting features will be

x =
[
er ec

]
where ek is the standard bitvector

ek =
[
0 0 . . . 1 0 . . . 0

]
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A limitation of logistic regression - II

The logistic regression model will be

Pr[y = 1|x] = σ(αr(x) + βc(x))

i.e. will comprise source- and destination-specific biases
Consider the ranking over destinations for any two source nodes
r1, r2

I This will be independent of the parameters αr1 , αr2
I =⇒ all source nodes will induce the same ranking over

destinations!
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How do we fix the problem? - I

Maybe supervised learning is not a good way to think of the
problem?
Many intuitive alternate schemes have been proposed:

I Count # of common neighbours
I Multiply degrees of the nodes
I Count # of paths of certain length between nodes
I . . .

But these only exploit topological structure
I How to also look at features for node and edges?
I Further, scoring based on some fixed criterion
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How do we fix the problem? - II

Ranking problem would disappear if we could take cross features
Turns out the näıve solution will give us:

Pr[y = 1|x] = σ(γr(x)c(x))

i.e. single parameter for every (source, node) dyad!
I Memorizes training data
I Cannot generalize to unseen dyad

What sort of model lets us get around this?

18 / 54



Outline

1 Background and roadmap

2 What’s special about predictions in graphs?

3 A log-linear model for dyadic prediction

4 Link prediction in undirected graphs

5 Link prediction in bipartite graphs

6 Predicting labels for nodes

7 Conclusion

19 / 54



Our starting point: log-linear models

We’ll describe a log-linear model for dyadic prediction

Simple, flexible framework
I Models probabilities of labels given examples

F Useful for taking actions based on predictions
I Labels can be nominal or ordered

F Applicable to a range of tasks
I Can integrate identity- and feature-information

F Exploit all available information
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The log-linear framework

A log-linear model for inputs x ∈ X and labels y ∈ Y assumes

p(y|x; θ) ∝ exp

(
J∑
j=1

θjfj(x, y)

)
for a weight vector θ, and feature functions fj : X × Y → R
Letting x = (r, c), resulting probability model is

p(y|(r, c); θ) ∝ exp(W y
rc)

for some tensor W ∈ Rm×n×|Y|
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The log-linear framework

A log-linear model for inputs x ∈ X and labels y ∈ Y assumes

p(y|x; θ) ∝ exp

(
J∑
j=1

θjfj(x, y)

)
for a weight vector θ, and feature functions fj : X × Y → R
Letting x = (r, c), resulting probability model is

p(y|(r, c); θ) ∝ exp(W y
rc)

for some tensor W ∈ Rm×n×|Y|

I Problem: W y
rc not defined for unobserved (r, c) pairs!

I Ends up memorizing the training set
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Factorizing interaction weights

Solution: Factorize the interaction weights W :

W y
rc ≈ (αyr:)

TΛyαyc: =
K∑

k,k′=1

λykk′α
y
rkα

y
ck′

for some fixed K ∈ Z+

I Ties together parameters, prevents memorization

Interpretation of parameters for a fixed r, c, y:
I α→ latent features (“fingerprint”) for each dyad member

(node in the graph)
I Λ→ scaling factors for each latent dimension
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Latent feature modelling

Associate a latent vector with each dyad member
I Movies with indie-aesthetic, rich orchestration, based on a

book, . . .

Label = f(similarity of corresponding latent vectors)

x
I Identities of dyad members influence label
I ∼ SVD with missing data
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Incorporating explicit features

If the dyad (r, c) has a feature vector src ∈ Rd, we use:

p(y|(r, c); θ) ∝ exp((αyr)
TΛyαyc+(vy)T src)

I Multinomial logistic regression with src as feature vector

Latent and explicit features complement each other
I If e.g. user has no ratings → ignore latent features, just use

feature weights
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The LFL model: definition

Resulting model with latent and explicit features:

p(y|(r, c); θ) ∝ exp((αyr)
TΛyαyc + (vy)T src)

Think of αy ∈ R(m+n)×K as latent feature vectors
I K = # of latent features
I Call this the latent feature log-linear or LFL model

[Menon and Elkan, 2010a]
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Training the LFL model - I

For training set T , training objective is

min
α,Λ,v

∑
((r,c),y)∈T

− log p(y|αr, αc,Λ, v) + λΩ(α,Λ, v)

I Only models observed entries
F No attempt to impute the missing entries when training

I `2 regularization to prevent overfitting

# of parameters = (m+ n) ·K · |Y|
I From a graph POV, linear in the # of nodes
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Training the LFL model - II
Optimize by block coordinate descent

I Fix all other parameters, optimize for α1; repeat for α2, α3, and
so on

I Each optimization is parallelizable across rows/columns

?

?

Time to train = |O| ·K · Y· # of iterations
I From a graph POV, linear in the # of labelled edges
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Probability model for undirected graphs

Recall that the basic LFL model was

p(y|(r, c); θ) ∝ exp((αyr)
TΛyαyc + (vy)T src)

Directed graph → Λy some general, asymmetric matrix
Undirected graph → Λy some diagonal matrix

I ∼ eigendecomposition
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Experimental results: unordered link prediction

Results on Alyawarra dataset, comprising kinship relations ({
Brother, Sister, Father, . . . }) between 104 people
Our model outperforms Bayesian models for relational data
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Probability model for binary edge weights

Commonly studied setting involves binary edge weights
Here, the LFL model reduces to

p(y|(r, c); θ) = σ(αTr Λαc + xTrWxc + vT zrc)

for sigmoid function σ(x) = 1/(1 + exp(−x)), node features
xr ∈ Rd and edge features zrc ∈ Rd′
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Dealing with class imbalance

Challenge: class imbalance
I Vast majority of node-pairs do not link with each other

To overcome imbalance, optimize latent features to maximize
convex approximation to AUC [Menon and Elkan, 2011]:

min
α,Λ,W,v

∑
(i,j,k)∈D

`(Ĝij − Ĝik, 1) + Ω(α,Λ,W, v)

where D = {(i, j, k) : Gij = 1, Gik = 0}
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Experiments on binary link prediction - I
Datasets from various applications of link prediction:

I Computational biology: Protein/metabolic networks
I Citation network: NIPS authors, condensed matter physicists
I Other: Military disputes, US electric powergrid

Latent features → directly predictive of link behaviour:

Prot−Prot Metabolic NIPS CondMat Conflict PowerGrid
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Experiments on binary link prediction - II

Fewer observed edges =⇒ unsupervised performance ≈ random
Latent features still manage to be reasonably predictive
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Figure: Results on dataset of military conflict relationships.
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Bipartite link prediction: movie recommendation

Recall the movie recommendation problem:

This is a type of bipartite link prediction
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Probability model for bipartite graphs

Recall that the basic LFL model was

p(y|(r, c); θ) ∝ exp((αyr)
TΛyαyc + (vy)T src)

We will drop Λ, and consider separate vectors for the two sets:

p(y|(r, c); θ) ∝ exp((αyr)
Tβyc + (vy)T src)

Movie recommendation example:
I Each user/movie has a collection of weights, representing

characteristics for different ratings
I Characteristics that make user rate 1 star 6= those that make

him rate 5 stars
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Prediction and training: unordered versus numeric

Unordered ratings → train to optimize log-likelihood
Not desirable for numeric ratings

I Difference between 1 and 5 6= difference between 4 and 5

Better alternative is to predict:

Ŷrc = E[y] =

|Y|∑
y=1

yp(y|(r, c); θ)

and optimize using e.g. MSE
I Expectation acts like a “summary function”
I Standard latent feature model → single factorization
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Assessing uncertainty

For numeric ratings, we can also compute

σ2
rc = E[y2]− (E[y])2

=
∑
y

y2p(y|(r, c); θ)−
(∑

y

yp(y|(r, c); θ)
)2

Quantifies estimated uncertainty of prediction
I Could be combined with business rules
I e.g. Protein-protein interaction: confidence in predicted link <

cost threshold =⇒ do not run expensive test
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Experiments on collaborative filtering - I

Results on 1M MovieLens (6040 users, 3952 movies, 1 million
ratings of 1-5 stars) and EachMovie (36,656 users, 1628 movies,
2.6 million ratings of 1-6 stars)
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Despite being more general, the LFL model is competitive with,
yet faster than, the MMMF method [Rennie and Srebro, 2005]
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Experiments on collaborative filtering - II

Estimated uncertainty correlates with observed test set errors
and average rating of movie:
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Figure: Result on MovieLens 1M
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Coping with extreme sparsity

In applications like response prediction for ads, labels are
especially scarce

Can use explicit features to pool together labels and estimate
latent features at a coarser granularity

Pages

Advertisements Campaigns Advertisers
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Experiments on response prediction

Results on three large Yahoo! advertising datasets

Latent feature gives lifts over state-of-the-art methods
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Dyadic label prediction

Given dyadic relationships + labels for some dyad members,
predict labels for all dyad members [Menon and Elkan, 2010b]
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Graph perspective: within-network classification

Input: Graph G = (V,E), labels for subset V ′ ⊆ V of nodes
Output: Predicted labels for all nodes in V − V ′

I Called the within-network classification problem

?

− −

+

+

Link
No Link
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Dyadic label prediction formally

Training set: {((ri, ci), yi)}Ni=1+ {(rj, zj)}N ′
j=1

I Now the rows, say, have additional labels

Output: f : {1, . . . ,m} → Z
I Optionally, predict missing dyadic relations too
I We allow Z = {0, 1}L, i.e. multi-label prediction

Numerous applications:
I Will a user respond to an ad campaign based on his movie

preferences?
I Is a user “suspicious” by virtue of his links?
I . . .
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“Reduction” to a dyadic prediction problem - I

Näıve solution: create a synthetic node for each label
I Connected to each node, edge annotated by the label value

?

− −

+

+

Link
No Link

Now learn latent features for the labels, reconstruct as normal
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“Reduction” to a dyadic prediction problem - I

Näıve solution: create a synthetic node for each label
I Connected to each node, edge annotated by the label value

+ +
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Now learn latent features for the labels, reconstruct as normal
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“Reduction” to a dyadic prediction problem - II

Issue: Generally, our final goal is predicting the labels
I Reconstructing the dyadic relationships is a means to that end

Weight the loss on “label nodes” to reflect this:

Objective = Loss(Nodes) + µLoss(Labels)

I µ represents tradeoff between supervision and label accuracy
I Must be careful not to overfit on the labels
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Experimental results: senator

Data comprises “Yea”/“Nay” votes of 101 senators concerning 315 bills

Label = whether senator is a Republican/Democrat

LFL does best on this dataset:
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Conclusion

Predicting labels in graphs is an important and far-reaching
problem
Latent features seem to be a promising solution

I Scalable
I Accurate
I Incorporate multiple sources of information
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