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DRE applications
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Robot transition estimation

In some cases, a different view may be more natural
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Class-probability estimation (CPE)
From labelled instances

, estimate probability of instance being +’ve

e.g. using logistic regression
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This talk

A formal link between DRE and CPE

CPE approach to three distinct learning problems
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Class-probability estimation



Distributions for learning with binary labels
Fix an instance space X (e.g. Rn)

Let D be a distribution over X×{±1}, with

(P(x),Q(x)) = (P(X = x | Y =+1),P(X = x | Y =−1))

(M(x),η(x)) = (P(X = x),P(Y =+1 | X = x))

Class conditionals Marginal and class-probability function
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Scorers, losses, risks

A scorer is any s : X→ R

e.g. linear scorer s : x 7→ 〈w,x〉
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A loss is any ` : {±1}×R→ R+

e.g. logistic loss ` : (y,v) 7→ log(1+ e−yv)
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Class-probability estimation
Goal: estimate η(x) .

= P(Y =+1 | X = x)

For suitable S⊂ RX, minimise empirical risk

argmin
s∈S

1
N

N

∑
n=1

`(yn,s(xn))

for strictly proper composite ` viz., for invertible link Ψ : (0,1)→ R,

argmin
s∈RX

E [`(Y,s(X))] = Ψ◦η

e.g. for logistic loss, Ψ(u) = log u
1−u

Estimate η̂
.
= Ψ−1 ◦ s

e.g. for logistic loss, η̂(x) = 1/(1+ exp(−s(x)))
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Examples of proper composite losses
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Class-probabilities and density ratios



CPE versus DRE
Given samples S∼ DN , with D = (P,Q) = (M,η):
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class-probability function
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Density ratio estimation (DRE)
Estimate r = p/q

class-conditional density ratio
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CPE and DRE: exact solutions
Bayes’ rule shows DRE and CPE are linked (Bickel et al, 2009):

r(x) .
=

p(x)
q(x)

=
P(X = x | Y =+1)
P(X = x | Y =−1)

∝
P(Y =+1 | X = x)
P(Y =−1 | X = x)

=
η(x)

1−η(x)

Obtain η via CPE→ also obtain r for DRE

But what about approximate solutions?
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CPE and DRE: approximate solutions?

Natural class-probability estimate: η̂
.
= Ψ−1 ◦ s

e.g. for logistic loss, η̂(x) = 1/(1+ e−s(x))

Natural density ratio estimate:

r̂(x) .
=

η̂(x)
1− η̂(x)

e.g. for logistic loss, r̂(x) = es(x)

Intuitive, but what can we guarantee about this?
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CPE as Bregman minimisation
For proper composite `, the regret of a scorer is

reg(s) .
= E [`(Y,s(X))]− min

s̄∈RX
E [`(Y, s̄(X))]

= E
[
Bf (η(X), η̂(X))

]
for Bregman divergence Bf (·, ·) and loss-specific f

e.g. for logistic loss, regret is a KL projection

reg(s) = E [KL(η(X)‖η̂(X))]

Concrete sense in which estimate η̂ is reasonable

Is there a similar sense in which r̂ is reasonable?
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A Bregman identity
One can show that:

(∀x,y ∈ [0,1])Bf (x,y) =

(1− x) ·Bf �

(
x

1− x
,

y
1− y

)
,

where f � : z 7→ (1+ z) · f
( z

1+z

)
Since r = η

1−η
and r̂ = η̂

1−η̂
,

reg(s) = E
X∼M

[
Bf (η(X), η̂(X))

]
∝ E

X∼Q

[
Bf � (r(X), r̂(X))

]

CPE implicitly estimates density ratios

complementary to (Sugiyama et al., 2012)

Menon and Ong, Linking losses for density ratio and class-probability estimation, ICML 2016.
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CPE and DRE: summary
The asymptotic targets of CPE and DRE are closely linked

r = η

1−η

Estimating η̂ by proper loss minimisation is reasonable

minimises Bregman divergence to η

Estimating r̂ by proper loss minimisation is reasonable

minimises alternate Bregman divergence to r

Underlying Bregman identity has multi-dimensional generalisation

Nock et al. A scaled Bregman theorem with applications. NIPS 2016.
14 / 45
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Summary thus far

CPE

Proper losses

DRE

KLIEP
LSIF

Logistic
Exponential

hello

hello

hello

✔	 ✖	✔	 ✖	 ✖	

?

?
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Learning from noisy binary labels



Learning from noisy binary labels
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Label noise: formally

We care about “clean” D

, but observe samples from D 6= D

P(X = x) remains same, but P(Y =+1 | X = x) does not

Ideal
min

s
E

(X,Y)
[`(Y,s(X))]

Reality
min

s
E

(X,Y)

[
`(Y,s(X))

]
How to minimise the ideal risk?
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Label noise: a CPE perspective

Denote by η(x) the “clean” P(Y =+1 | X = x)

Suppose (x,y) has label flipped with probability ρ ∈ [0,1/2)

The “noisy” P(Y =+1 | X = x) is

η(x) = (1−ρ) ·η(x)+ρ · (1−η(x))

We may write[
η(x)

1−η(x)

]
=

[
1−ρ ρ

ρ 1−ρ

]
︸ ︷︷ ︸

T

[
η(x)

1−η(x)

]
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Noise-corrected losses

E
(X,Y)

[`(Y,s(X))]

= E
X∼M

[
η(X)

1−η(X)

]T [
`(+1,s(X)) `(−1,s(X))

]
= E

X∼M

[
η(X)

1−η(X)

]T

(T−1)T [`(+1,s(X)) `(−1,s(X))
]

= E
X∼M

[
η(X)

1−η(X)

]T [
`(+1,s(X)) `(−1,s(X))

]
= E

(X,Y)

[
`(Y,s(X))

]
,

for the noise-corrected loss (Natarajan et al., 2013)

`(y,v) =
1

1−2 ·ρ ((1−ρ) · `(y,v)−ρ · `(−y,v))

But ρ is unknown...
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Noise rate estimation

One can avoid knowing ρ for suitable `

eigenfunctions for the loss transform, e.g. “un-hinged” loss

Alternately, assume minx η(x) = 0, maxx η(x) = 1

“guaranteed” positive and negative instances

c.f. (Scott et al., 2013), (du Plessis et al., 2014)

Since η(x) = (1−2 ·ρ) ·η(x)+ρ ,

min
x

η(x) = ρ max
x

η(x) = 1−ρ

Range of η lets us estimate ρ!

van Rooyen et al. Learning with symmetric label noise: the importance of being unhinged. NIPS 2015.

Menon et al. Learning from corrupted binary labels via class-probability estimation. ICML 2015.
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Beyond symmetric binary noise

For asymmetric multi-class noise, we similarly have

η(x) = Tη(x)

where e.g. η(x) = (P(Y = 1 | X = x), . . . ,P(Y = K | X = x))

analogous noise-corrected loss and noise estimation

Broader range of weakly supervised problems captured

confer (van Rooyen & Williamson, 2017)

Patrini et al. Making deep neural networks robust to label noise: a loss correction approach. CVPR 2017.
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Illustration: deep network

Corrected losses with and without noise estimation

Patrini et al. Making deep neural networks robust to label noise: a loss correction approach. CVPR 2017.
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Instance-dependent noise?

Denote by η(x) the “clean” P(Y =+1 | X = x)

Suppose (x,y) has label flipped with probability ρ(x) ∈ [0,1/2)

The “noisy” class-probability function is

η(x) = (1−ρ(x)) ·η(x)+ρ(x) · (1−η(x))

Estimating ρ(x) is non-trivial

To make progress, we impose some structure on ρ and η
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Assumptions on noise and distribution

Noise increases as η(x) approaches 1/2

higher inherent uncertainty→ higher noise

Class-probability is expressible as

η(x) = u(〈w∗,x〉)

for some non-decreasing, Lipschitz u(·)

u unknown→ single index model (SIM)

such models learnable via Isotron (Kalai & Sastry, 2009)
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Structure of noisy class-probability

Under these assumptions, one may show

η(x) = u(〈w∗,x〉)

for monotone u

still in the SIM family!

noise is baked into u

One can estimate η via Isotron

do not need to know flip function ρ or link function u

Menon et al. Learning from binary labels with instance-dependent corruption. https://arxiv.org/abs/1605.00751
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Illustration: instance-dependent noise

Label flip function f (z) = (1+ e|z|/α)−1

α Ridge ACC Isotron ACC
1
8 0.9940 ± 0.0003 0.9974 ± 0.0002
1
4 0.9947 ± 0.0004 0.9974 ± 0.0003
1
2 0.9944 ± 0.0004 0.9937 ± 0.0006
1 0.9853 ± 0.0012 0.9700 ± 0.0021
2 0.8988 ± 0.0053 0.9239 ± 0.0050
4 0.7410 ± 0.0072 0.7863 ± 0.0138
8 0.6185 ± 0.0078 0.6467 ± 0.0405

usps 0v9

α Ridge ACC Isotron ACC
1
8 0.9958 ± 0.0001 0.9984 ± 0.0001
1
4 0.9958 ± 0.0001 0.9979 ± 0.0001
1
2 0.9953 ± 0.0002 0.9966 ± 0.0003
1 0.9871 ± 0.0005 0.9864 ± 0.0007
2 0.9446 ± 0.0012 0.9565 ± 0.0013
4 0.8262 ± 0.0022 0.8768 ± 0.0041
8 0.6872 ± 0.0024 0.8088 ± 0.0291

mnist 6v7

26 / 45



Summary thus far

CPE

Proper losses

DRE

KLIEP
LSIF

Logistic
Exponential

✔	 ✖	✔	 ✖	 ✖	

?

?
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Fitting point processes



Point processes

Model the rate at which events occur in time

re-tweets in a social network, earthquakes, . . .

Time

28 / 45



Point processes: formally

Suppose (N(t))t≥0 counts the # of events in (0, t]

In the non-homogeneous Poisson process (NHPP), one posits that
the # of events in (s, t] follows

N(t)−N(s)∼ Poiss
(∫ t

s
λ (u)du

)
for intensity function λ : R+→ R+

instantaneous rate at which events occur
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NHPP likelihood
Suppose we observe event times {t1, . . . , tN}, with T .

= maxn tn

The negative log-likelihood for intensity λ (·;θ) is

L(θ)
.
=

N

∑
n=1
− logλ (tn;θ)+

∫ T

0
λ (u;θ)du

∝
1
N

N

∑
n=1
− logλ (tn;θ)+

T
N
·
∫ T

0

1
T
·λ (u;θ)du

= E
T∼P̂

[− logλ (T;θ)]+
T
N
· E

T′∼Q

[
λ (T′;θ)

]
where Q is uniform over [0,T]

Classification with a uniform background!
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NHPPs as binary classification

On an interval [0,T], event times {t1, . . . , tN} are iid with density

p(t) =
λ (t)∫ T

0 λ (u)du

Asymptotically, the likelihood is the classification risk

with minimiser

Weighted density ratio estimation!
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Generalised likelihood?
For scorer s : R+→ R, consider

min
s∈S

Ê
P
[`(+1,s(T))]+

T
N
·E

Q

[
`(−1,s(T′))

]
= min

s∈S

N

∑
n=1

`(+1,s(tn))+
∫ T

0
`(−1,s(t))dt

for strictly proper composite `

We retain the optimal solution by picking

λ (t) =
Ψ−1(s(t))

1−Ψ−1(s(t))

optimal s = Ψ(η), η

1−η
∝ p

32 / 45



Generalised likelihood?
For scorer s : R+→ R, consider

min
s∈S

Ê
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Application: Hawkes processes
The self-exciting Hawkes process assumes, for link F(·),

λ
(
t;{tn}N

n=1
)
= F

(
µ +α ·∑

tn<t
e−δ ·(t−tn)

)

occurrence of one event triggers subsequent events

0 1 2 3 4 5 6
t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

λ
(t

)
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Generalised Hawkes likelihood?
In terms of a scorer, the Hawkes intensity is

λ
(
t;{tn}N

n=1
)
= F (s(t))

s(t) = µ +α ·Φ(t)

Φ(t) .
= ∑

tn<t
e−δ ·(t−tn)

Can minimise a proper loss with this s(·) and Φ, and set

λ (t) =
Ψ−1(s(t))

1−Ψ−1(s(t))

= F(s(t))

if we choose

Ψ
−1(v) =

F(v)
1+F(v)

Menon and Lee. Beyond the likelihood: new loss functions for (non-)linear Hawkes processes. In preparation.
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Hawkes process with linear F(·)
For F(z) = z, we may explore losses with Ψ(u) = u

1−u

losses that directly seek density ratios

One appealing candidate (Kanamori et al., 2009):

`(+1,v) =−v `(−1,v) =
1
2

v2

c.f. (Reynaud-Bouret 2014, Bacry et al., 2015)

Potential closed-form solution

θ
∗ =

N
T
·
(
E
Q

[
Φ(T′)Φ(T′)T])−1

Ê
P
[Φ(T)]

when this quantity is non-negative
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Hawkes process with exponential F(·)

For F(z) = ez, we may explore losses with Ψ(u) = log u
1−u

One appealing candidate is familiar logistic loss

nonlinear Hawkes with logistic regression!

By weighting the negative class, this is actually equivalent to MLE

follows from (Fithian & Hastie, 2013)
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Illustration: fitting with proper losses

Prediction of # events on lastfm and bitcoin datasets
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Summary thus far

CPE

Proper losses

DRE

KLIEP
LSIF

Logistic
Exponential

✔	 ✖	✔	 ✖	 ✖	

?
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Fairness-aware classification



Fairness-aware classification

Learn a classifier achieving two goals:

accurately predict a target label

don’t discriminate on some sensitive feature

✔	 ✖	✔	 ✖	 ✖	

39 / 45



Fairness-aware classification: formally
We seek a classifier f : X→{±1}, with induced predictions Ŷ

f should predict well target variable Y

e.g. attain low balanced error,

BER(f ) .
=

1
2
·
(
P(Ŷ =+1 | Y =−1)+P(Ŷ =−1 | Y =+1)

)

f should predict poorly sensitive variable Y

e.g. attain high balanced error,

BER(f ) .
=

1
2
·
(
P(Ŷ =+1 | Y =−1)+P(Ŷ =−1 | Y =+1)

)
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Fairness-aware objective
We seek a solution to

min
f

BER(f )−λ ·BER(f )

= min
s

E
P

Js(X)< 0K+E
Q

Js(X′)> 0K

−λ ·
(
E
P

Js(X)< 0K+E
Q

Js(X′)> 0K
)

Natural to consider surrogate risk

min
s

BER`(s)−λ ·BER`(s) = min
s

E
P
`(+1,s(X))+E

Q
`(−1,s(X′))

−λ ·
(
E
P
`(+1,s(X))+E

Q
`(−1,s(X′))

)
but in general this will be non-convex
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CPE approach?
Alternately, let us consider the Bayes-optimal solutions

f ∗ ∈ argmin
f : X→{±1}

BER(f )−λ ·BER(f )

Easy to show that

f ∗(x) = Jη(x)−π > λ · (η(x)−π)K

η(x) .
= P(Y =+1 | X = x)

η(x) .
= P(Y =+1 | X = x)

π
.
= P(Y =+1)

π
.
= P(Y =+1)

Just requires CPE on the target and sensitive features!

tuning of λ does not require re-training

also useful to study feature learning (McNamara et al., 2017)

Menon and Williamson. The cost of fairness in binary classification. https://arxiv.org/abs/1705.09055
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Illustration of CPE approach

Competitive performance with bespoke optimisation (COV) on UCI
adult and synthetic Gaussian datasets
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Conclusion



Talk summary
A formal link between DRE and CPE

CPE approach to three distinct learning problems

CPE

Proper losses

DRE

KLIEP
LSIF

Logistic
Exponential

✔	 ✖	✔	 ✖	 ✖	
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For another day

★	

★★	

★	

★★	

★★★	
	

?	

Recommender systems Ranking
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