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Anomaly detection
Identify instances that deviate from some systematic pattern
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Anomaly detection landscape
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One-class SVMs: enclosing ball view
Find the smallest ball enclosing most of the data
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One-class SVMs: origin separation view

Pick an RKHS H and desired anomaly fraction ν ∈ (0,1)

Find f ∈H and o�set α ∈ R to separate data from origin

For data distribution P,

min
f ,α

E
P
[α− f (X)]+︸ ︷︷ ︸
hinge loss

+
ν

2
· ‖f‖2

H︸ ︷︷ ︸
regulariser

− ν ·α︸︷︷︸
ν−SVM relic
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One-class SVMs: pros and cons
OC-SVMs inherit the standard SVM’s strengths and weaknesses

X convex objective

X focus e�ort on decision boundary

× doesn’t focus on probability of instance being anomalous

× unclear Bayes-optimal solution

Degree of 
abnormality
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This talk

Anomaly detection = binary classi�cation

distinguish samples against an implicit background

Take-home #1

Probabilistic anomaly detection = class-probability estimation

can use familiar tools: logistic regression, boosting, . . .

Take-home #2

Speci�c kind of OC-SVM turns out to be a special case!

gives a di�erent perspective on underlying components

Surprise
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Deconstructing one-class SVMs

Pick an RKHS H and desired anomaly fraction ν ∈ (0,1)

For data distribution P, the OC-SVM solves

min
f ,α

E
P
[α− f (X)]+︸ ︷︷ ︸
hinge loss

capped proper loss

+
ν

2
· ‖f‖2

H︸ ︷︷ ︸
regulariser

+ background contrast

− ν ·α︸︷︷︸
ν−SVM relic
pinball loss

We give a di�erent interpretation for the OC-SVM’s components
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Anomaly detection as classi�cation



Density sublevel view of anomaly detection
Pick a reference measure µ (e.g., Lebesgue)

Suppose our data distribution P has density p .
= dP

dµ

De�ne anomalies to be instances with low density
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Recap: binary classi�cation
Suppose we have positive and negative data distributions P,Q

Classify instances based on dominant density

q(x)

x

p(x)
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Anomaly detection as binary classi�cation
Consider classi�cation of data distribution P versus uniform Q

q(x)

x

p(x)

Anomaly detection = classi�cation against uniform background!
(Steinwart & Scovel, 2005)
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Anomaly detection as binary classi�cation
Fix some density threshold α > 0

Anomaly detection seeks a scorer f : X→ R, where1

f (x)> α ⇐⇒ p(x)> α

(Steinwart & Scovel, 2005): classify data P against background Q:

min
f

E
P

Jf (X)< αK+α ·E
Q

Jf (X)> αK

cost-weighted classi�cation loss

Anomaly detection as binary classi�cation!

1 We assume P(p(X) = α) = 0
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This talk

Anomaly detection = binary classi�cation

distinguish samples against an implicit background

Take-home #1 X

Probabilistic anomaly detection = class-probability estimation

can use familiar tools: logistic regression, boosting, . . .

Take-home #2 ?
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Changing the loss function

What if we instead minimise

min
f

E
P
`(+1, f (X))+E

Q
`(−1, f (X))

for a generic loss ` : {±1}×R→ R?

Result will be exactly per discrimination of P versus Q

e.g., for proper losses, we recover p(x)

i.e., we perform density estimation
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A running example
Consider the LSIF loss (Kanamori et al., 2009)

`(+1, f ) =−f `(−1, f ) =
1
2
· f 2

The objective becomes:

Risk(f ) = E
P
`(+1, f (X))+E

Q
`(−1, f (X))

= E
P
− f (X)+E

Q

1
2
· f (X)2

= E
Q

[
−p(X) · f (X)+ 1

2
· f (X)2

]
= E

Q
(f (X)−p(X))2 + constant.

LSIF loss minimisation = least squares density �tting!
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State of play
The general objective

min
f

E
P
`(+1, f (X))+E

Q
`(−1, f (X))

captures two distinct problem settings

What problem lives in between?
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Partially proper losses



Partial density estimation
The targets for the two problem settings we’ve seen are:

x

p(x)

The full p(x) for density estimation

and a thresholded version for
sublevel estimation

Natural intermediary: model the tail only
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An ensemble of cost-sensitive losses
Density estimation seeks the entire family of sublevel sets

x

p(x)

Each set is attainable with the α cost-sensitive loss

Combine losses for various values of α?
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Weight functions for proper losses

Consider the cost-sensitive loss

`CS(+1, f ;c) = (1− c) · Jf < cK `CS(−1, f ;c) = c · Jf > cK

Every proper loss is a mixture of cost-sensitive losses:

`(y, f ) =
∫ 1

0
w(c) · `CS(y, f ;c)dc.

The weight function w determines modelling e�ort

Choose a weight which emphasises small c values

19 / 42



Weight functions for proper losses

Consider the cost-sensitive loss

`CS(+1, f ;c) = (1− c) · Jf < cK `CS(−1, f ;c) = c · Jf > cK

Every proper loss is a mixture of cost-sensitive losses:

`(y, f ) =
∫ 1

0
w(c) · `CS(y, f ;c)dc.

The weight function w determines modelling e�ort

Choose a weight which emphasises small c values

19 / 42



Weight functions for proper losses

Consider the cost-sensitive loss

`CS(+1, f ;c) = (1− c) · Jf < cK `CS(−1, f ;c) = c · Jf > cK

Every proper loss is a mixture of cost-sensitive losses:

`(y, f ) =
∫ 1

0
w(c) · `CS(y, f ;c)dc.

The weight function w determines modelling e�ort

Choose a weight which emphasises small c values

19 / 42



Weight functions for proper losses

Consider the cost-sensitive loss

`CS(+1, f ;c) = (1− c) · Jf < cK `CS(−1, f ;c) = c · Jf > cK

Every proper loss is a mixture of cost-sensitive losses:

`(y, f ) =
∫ 1

0
w(c) · `CS(y, f ;c)dc.

The weight function w determines modelling e�ort

Choose a weight which emphasises small c values

19 / 42



Weight functions for proper losses
For square loss, w(c) = 1, i.e., all costs are equal
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Weight functions for proper losses
For the LSIF loss, we have smooth w(c) = (1− c)−3

For the cost-sensitive loss, we have delta-function w(c) = δc0(c)

0.2 0.4 0.6 0.8 1
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w
(c
)

Natural intermediary: weight with partial support
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Partially supported weight functions
Fix a proper loss ` with weight function w

Suppose for c0 ∈ (0,1), we modify the weight to

w̄(c) = Jc≤ c0K ·w(c)

For α = c0
1−c0

, the loss corresponding to w̄ is

¯̀(+1, f ) = `(+1, f ∧α) ¯̀(−1, f ) = `(−1, f ∧α)

Fact

E�ect is to saturate the losses
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Partially supported weight functions

Consider the cost-sensitive loss with c0 =
1
2 ,

`(+1, f ) =
1
2
· Jf < 0K `(−1, f ) =

1
2
· Jf > 0K
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Partially supported weight functions

Consider the modi�ed LSIF loss

`(+1, f ) = 1− (f ∧1) `(−1, f ) =
1
2
· (f ∧1)2
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Partially proper losses
For the LSIF loss, the modi�ed version

¯̀(+1, f ) = [α− f ]+ ¯̀(−1, f ) =
1
2
· (f ∧α)2

is partially proper in the following sense

The optimal prediction under ¯̀ is

f (x) ∈
{
[α,+∞) if p(x)> α

p(x) if p(x)< α

Fact

Exactly as desired for partial density estimation!
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Partially proper losses
For the LSIF loss, consider a further modi�cation

˜̀(+1, f ) = [α− f ]+ ˜̀(−1, f ) =
1
2
· f 2

only saturate the loss on positives

The optimal prediction under ˜̀ is

f (x) ∈
{

α if p(x)> α

p(x) if p(x)< α

Fact

Perform capped density estimation
no longer have full �exibility for high density area
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Comparison to one-class SVMs

For data distribution P, the OC-SVM solves

min
f ,α

E
P
[α− f (X)]+︸ ︷︷ ︸
hinge loss

+
ν

2
· ‖f‖2

H︸ ︷︷ ︸
regulariser

− ν ·α︸︷︷︸
ν−SVM relic

while we solve

min
f

E
P
[α− f (X)]+︸ ︷︷ ︸

capped proper loss

+ E
Q

1
2
· f (X)2︸ ︷︷ ︸

background contrast
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This talk

Anomaly detection = binary classi�cation

distinguish samples against an implicit background

Take-home #1 X

Probabilistic anomaly detection = class-probability estimation

can use familiar tools: logistic regression, boosting, . . .

Take-home #2 X

Speci�c kind of OC-SVM turns out to be a special case!

gives a di�erent perspective on underlying components

Surprise ?
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Kernel absorption



Partial density estimation
To obtain tail density probabilities, we propose to minimise

min
f

E
P
[α− f (X)]++E

Q

1
2
· f (X)2

Practically, we may pick f from an RKHS H via

min
f

E
P
[α− f (X)]++E

Q

1
2
· f (X)2 +

γ

2
· ‖f‖2

H

Convex, but requires computing a high-dimensional integral

A simple trick lets us side-step this
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A kernel trick
Observe that

E
Q

1
2
· f (X)2 +

γ

2
· ‖f‖2

H = ‖f‖2
L2(µ)

+
γ

2
· ‖f‖2

H

standard plus Hilbert-space square norm

Fortuitously, we can write (McCullagh and Møller, 2006)

‖f‖2
L2(µ)

+ γ · ‖f‖2
H = ‖f‖2

H̄(γ,µ)

for some modi�ed RKHS H̄(γ,µ)

corresponding kernel k̄ modi�es eigenvalues of k

This obviates the need for approximating the expectation!
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A kernel trick: comments

Connection to point processes is unsurprising

latter is scaled density estimation (Fithian & Hastie, 2013)

Penalty ‖f‖2
H̄(γ,µ)

bakes in measure µ and regulariser

model complexity plus discrimination

New kernel k̄ may not have analytic form

can approximate with Nyström method
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Comparison to one-class SVMs
For data distribution P, the OC-SVM solves

min
f ,α

E
P
[α− f (X)]+︸ ︷︷ ︸
hinge loss

+
ν

2
· ‖f‖2

H︸ ︷︷ ︸
regulariser

− ν ·α︸︷︷︸
ν−SVM relic

while we solve

min
f

E
P
[α− f (X)]+︸ ︷︷ ︸

capped proper loss

+
1
2
· ‖f‖2

H̄(γ,µ)︸ ︷︷ ︸
regulariser

+ background contrast

How do we control the threshold α?
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Alarm rate control



Parametrising anomaly level
To obtain tail density probabilities, we propose to minimise

min
f

E
P
[α− f (X)]++

1
2
· ‖f‖2

H̄(γ,µ)

Choice of α determines density threshold

More intuitive: given ν ∈ (0,1), implicitly use αν such that

P(p(X)< αν) = ν

quantile of the random variable p(X)
ν speci�es the alarm rate of our predictor
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Pinball loss
Recall that the median α1/2 of a distribution P is

α1/2 = argmin
α∈R

E
P
|X−α|

More generally, the νth quantile of a distribution P is
αν = argmin

α∈R
E
P

[
φpin(X−α;ν)

]
for the pinball loss φpin
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Relating the hinge and pinball loss
The pinball loss is equivalently

φpin(z;ν) = [z]++ν · z

Fact

Thus, we have

E
P
[α− f (X)]+ = E

P

[
φpin(f (X)−α;ν)

]
−ν ·E

P
[f (X)]+ν ·α

Thus, we may jointly minimise

min
f ,α

E
P

[
φpin(f (X)−α;ν)

]
−ν ·E

P
[f (X)]+ 1

2
· ‖f‖2

H̄

and obtain α∗ as the νth quantile of f ∗(X)!
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Summary: deconstructing one-class SVMs
For data distribution P, the OC-SVM solves

min
f ,α

E
P
[α− f (X)]+︸ ︷︷ ︸
hinge loss

+
ν

2
· ‖f‖2

H︸ ︷︷ ︸
regulariser

− ν ·α︸︷︷︸
ν−SVM relic

while we solve

min
f ,α

E
P
[α− f (X)]+︸ ︷︷ ︸

capped proper loss

+
1
2
· ‖f‖2

H̄(µ,γ)︸ ︷︷ ︸
regulariser

+background contrast

− ν ·α︸︷︷︸
pinball loss

Note this is just one special case of our framework

35 / 42



Summary: deconstructing one-class SVMs
For data distribution P, the OC-SVM solves

min
f ,α

E
P
[α− f (X)]+︸ ︷︷ ︸
hinge loss

+
ν

2
· ‖f‖2

H︸ ︷︷ ︸
regulariser

− ν ·α︸︷︷︸
ν−SVM relic

while we solve

min
f ,α

E
P
[α− f (X)]+︸ ︷︷ ︸

capped proper loss

+
1
2
· ‖f‖2

H̄(µ,γ)︸ ︷︷ ︸
regulariser

+background contrast

− ν ·α︸︷︷︸
pinball loss

Note this is just one special case of our framework

35 / 42



Summary: deconstructing one-class SVMs
For data distribution P, the OC-SVM solves

min
f ,α

E
P
[α− f (X)]+︸ ︷︷ ︸
hinge loss

+
ν

2
· ‖f‖2

H︸ ︷︷ ︸
regulariser

− ν ·α︸︷︷︸
ν−SVM relic

while we solve

min
f ,α

E
P
[α− f (X)]+︸ ︷︷ ︸

capped proper loss

+
1
2
· ‖f‖2

H̄(µ,γ)︸ ︷︷ ︸
regulariser

+background contrast

− ν ·α︸︷︷︸
pinball loss

Note this is just one special case of our framework
35 / 42



Empirical illustration



Qualitative results
Augment usps test instances with one-hot encoding of label

Identify inliers and outliers
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Quantitative results

We �t our model to a “normal” sample on three datasets

usps: digit 0
sat: largest 3 classes
art: ∼ mixture of Gaussians

Evaluate classi�cation performance on a test sample of normal
and anomalous instances
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Quantitative results: usps score distribution
Scores for digit 0 on train and test set largely agree

Scores for digit 1–9 distinct, despite being unseen at train time
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Quantitative results: alarm-miss curves
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Summary



This talk

Anomaly detection = binary classi�cation

distinguish samples against an implicit background

Take-home #1

Probabilistic anomaly detection = class-probability estimation

can use familiar tools: logistic regression, boosting, . . .

Take-home #2

Speci�c kind of OC-SVM turns out to be a special case!

gives a di�erent perspective on underlying components

Surprise
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Deconstructing one-class SVMs
Pick an RKHS H and desired anomaly fraction ν ∈ (0,1)

For data distribution P, the OC-SVM solves

min
f ,α

E
P
[α− f (X)]+︸ ︷︷ ︸
hinge loss

+
ν

2
· ‖f‖2

H︸ ︷︷ ︸
regulariser

− ν ·α︸︷︷︸
ν−SVM relic

Questions nonetheless remain:
implicit µ,γ for Gaussian kernel?

avoiding need for density for minimum volume sets?

link interpretation of robust versions of loss?
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Thanks!

42 / 42


	Anomaly detection as classification
	Partially proper losses
	Kernel absorption
	Alarm rate control
	Empirical illustration
	Summary

