One-class logistic regression & friends

Probabilistic anomaly detection as loss minimisation

Aditya Krishna Menon Robert C. Williamson

The Australian National University

Jun 28th, 2018

Anomaly detection

Identify instances that deviate from some systematic pattern

Anomaly detection

Identify instances that deviate from some systematic pattern

Anomaly detection landscape

Statistical test

One-class SVM

Nearest neighbour

Structural health monitoring

Network analysis

Credit fraud

Anomaly detection landscape

Nearest neighbour

•••

Structural health monitoring

Network analysis

Credit fraud

One-class SVMs: enclosing ball view Find the smallest ball enclosing most of the data

One-class SVMs: enclosing ball view Find the smallest ball enclosing most of the data

Pick an RKHS ${\mathfrak H}$ and desired anomaly fraction ${m v}\in(0,1)$

Pick an RKHS ${\mathfrak H}$ and desired anomaly fraction ${m v}\in(0,1)$

Find $f \in \mathcal{H}$ and offset $\alpha \in \mathbb{R}$ to separate data from origin

Pick an RKHS ${\mathfrak H}$ and desired anomaly fraction ${m v}\in (0,1)$

Find $f \in \mathcal{H}$ and offset $\alpha \in \mathbb{R}$ to separate data from origin

For data distribution P,

$$\min_{f,\alpha} \mathbb{E}_{P} [\alpha - f(\mathsf{X})]_{+} + \frac{\mathsf{v}}{2} \cdot \|f\|_{\mathcal{H}}^{2} - \mathsf{v} \cdot \alpha$$

Pick an RKHS ${\mathfrak H}$ and desired anomaly fraction ${m v}\in (0,1)$

Find $f \in \mathcal{H}$ and offset $\alpha \in \mathbb{R}$ to separate data from origin

For data distribution P,

- ✓ convex objective
- ✓ focus effort on decision boundary

- ✓ convex objective
- ✓ focus effort on decision boundary
- imes doesn't focus on probability of instance being anomalous

- ✓ convex objective
- ✓ focus effort on decision boundary
- imes doesn't focus on probability of instance being anomalous

- ✓ convex objective
- focus effort on decision boundary
- imes doesn't focus on probability of instance being anomalous
- imes unclear Bayes-optimal solution

Take-home #1

Anomaly detection = binary classification

• distinguish samples against an implicit background

Take-home #1

Anomaly detection = binary classification

• distinguish samples against an implicit background

Take-home #2

Probabilistic anomaly detection = class-probability estimation

• can use familiar tools: logistic regression, boosting, ...

Take-home #1

Anomaly detection = binary classification

• distinguish samples against an implicit background

Take-home #2

Probabilistic anomaly detection = class-probability estimation

• can use familiar tools: logistic regression, boosting, ...

Surprise

Specific kind of OC-SVM turns out to be a special case!

• gives a different perspective on underlying components

Deconstructing one-class SVMs

Pick an RKHS \mathfrak{H} and desired anomaly fraction $v \in (0,1)$

For data distribution *P*, the OC-SVM solves

Deconstructing one-class SVMs

Pick an RKHS ${\mathfrak H}$ and desired anomaly fraction ${m v}\in(0,1)$

For data distribution P, the OC-SVM solves

We give a different interpretation for the OC-SVM's components

Density sublevel view of anomaly detection Pick a reference measure μ (e.g., Lebesgue)

Density sublevel view of anomaly detection Pick a reference measure μ (e.g., Lebesgue)

Suppose our data distribution *P* has density $p \doteq \frac{dP}{d\mu}$

Density sublevel view of anomaly detection Pick a reference measure μ (e.g., Lebesgue)

Suppose our data distribution *P* has density $p \doteq \frac{dP}{d\mu}$

Define anomalies to be instances with low density

Recap: binary classification

Suppose we have positive and negative data distributions P, Q

Recap: binary classification

Suppose we have positive and negative data distributions P, Q

Classify instances based on dominant density

Recap: binary classification

Suppose we have positive and negative data distributions P, Q

Classify instances based on dominant density

Anomaly detection as binary classification Consider classification of data distribution *P* versus uniform *Q*

Anomaly detection as binary classification Consider classification of data distribution P versus uniform Q

Anomaly detection = classification against uniform background! (Steinwart & Scovel, 2005)

Fix some density threshold $\alpha > 0$

Anomaly detection seeks a scorer $f \colon \mathfrak{X} \to \mathbb{R}$, where¹

 $f(x) > \alpha \iff p(x) > \alpha$

Fix some density threshold $\alpha > 0$

Anomaly detection seeks a scorer $f: \mathfrak{X} \to \mathbb{R}$, where¹

$$f(x) > \alpha \iff p(x) > \alpha$$

(Steinwart & Scovel, 2005): classify data *P* against background *Q*:

$$\min_{f} \mathop{\mathbb{E}}_{P} \left[f(\mathsf{X}) < \alpha \right] + \alpha \cdot \mathop{\mathbb{E}}_{Q} \left[f(\mathsf{X}) > \alpha \right]$$

cost-weighted classification loss

¹ We assume $P(p(X) = \alpha) = 0$

Fix some density threshold $\alpha > 0$

Anomaly detection seeks a scorer $f: \mathfrak{X} \to \mathbb{R}$, where¹

$$f(x) > \alpha \iff p(x) > \alpha$$

(Steinwart & Scovel, 2005): classify data *P* against background *Q*:

$$\min_{f} \mathop{\mathbb{E}}_{P} \left[f(\mathsf{X}) < \alpha \right] + \alpha \cdot \mathop{\mathbb{E}}_{Q} \left[f(\mathsf{X}) > \alpha \right]$$

• cost-weighted classification loss

Anomaly detection as binary classification!

¹ We assume $P(p(X) = \alpha) = 0$

Take-home #1

Anomaly detection = binary classification

• distinguish samples against an implicit background
This talk

• can use familiar tools: logistic regression, boosting, ...

Changing the loss function

What if we instead minimise

$$\min_{f} \mathop{\mathbb{E}}_{P} \ell(+1, f(\mathsf{X})) + \mathop{\mathbb{E}}_{Q} \ell(-1, f(\mathsf{X}))$$

for a generic loss $\ell \colon \{\pm 1\} \times \mathbb{R} \to \mathbb{R}$?

Changing the loss function

What if we instead minimise

$$\min_{f} \mathbb{E}_{P} \ell(+1, f(\mathsf{X})) + \mathbb{E}_{Q} \ell(-1, f(\mathsf{X}))$$

for a generic loss $\ell \colon \{\pm 1\} \times \mathbb{R} \to \mathbb{R}$?

Result will be exactly per discrimination of *P* versus *Q*

Changing the loss function

What if we instead minimise

$$\min_{f} \mathbb{E}_{P} \ell(+1, f(\mathsf{X})) + \mathbb{E}_{Q} \ell(-1, f(\mathsf{X}))$$

for a generic loss $\ell \colon \{\pm 1\} \times \mathbb{R} \to \mathbb{R}$?

Result will be exactly per discrimination of *P* versus *Q*

e.g., for proper losses, we recover p(x)

• i.e., we perform density estimation

$$\ell(+1,f) = -f$$
 $\ell(-1,f) = \frac{1}{2} \cdot f^2$

$$\ell(+1,f) = -f$$
 $\ell(-1,f) = \frac{1}{2} \cdot f^2$

$$\ell(+1,f) = -f$$
 $\ell(-1,f) = \frac{1}{2} \cdot f^2$

$$\operatorname{Risk}(f) = \mathop{\mathbb{E}}_{P} \ell(+1, f(\mathsf{X})) + \mathop{\mathbb{E}}_{Q} \ell(-1, f(\mathsf{X}))$$

$$\ell(+1,f) = -f$$
 $\ell(-1,f) = \frac{1}{2} \cdot f^2$

$$\operatorname{Risk}(f) = \underset{P}{\mathbb{E}} \ell(+1, f(\mathsf{X})) + \underset{Q}{\mathbb{E}} \ell(-1, f(\mathsf{X}))$$
$$= \underset{P}{\mathbb{E}} - f(\mathsf{X}) + \underset{Q}{\mathbb{E}} \frac{1}{2} \cdot f(\mathsf{X})^{2}$$

$$\ell(+1,f) = -f$$
 $\ell(-1,f) = \frac{1}{2} \cdot f^2$

$$\operatorname{Risk}(f) = \underset{P}{\mathbb{E}} \ell(+1, f(\mathsf{X})) + \underset{Q}{\mathbb{E}} \ell(-1, f(\mathsf{X}))$$
$$= \underset{P}{\mathbb{E}} - f(\mathsf{X}) + \underset{Q}{\mathbb{E}} \frac{1}{2} \cdot f(\mathsf{X})^{2}$$
$$= \underset{Q}{\mathbb{E}} \left[-p(\mathsf{X}) \cdot f(\mathsf{X}) + \frac{1}{2} \cdot f(\mathsf{X})^{2} \right]$$

$$\ell(+1,f) = -f$$
 $\ell(-1,f) = \frac{1}{2} \cdot f^2$

$$\begin{split} \operatorname{Risk}(f) &= \mathop{\mathbb{E}}_{P} \ell(+1, f(\mathsf{X})) + \mathop{\mathbb{E}}_{Q} \ell(-1, f(\mathsf{X})) \\ &= \mathop{\mathbb{E}}_{P} - f(\mathsf{X}) + \mathop{\mathbb{E}}_{Q} \frac{1}{2} \cdot f(\mathsf{X})^{2} \\ &= \mathop{\mathbb{E}}_{Q} \left[-p(\mathsf{X}) \cdot f(\mathsf{X}) + \frac{1}{2} \cdot f(\mathsf{X})^{2} \right] \\ &= \mathop{\mathbb{E}}_{Q} \left(f(\mathsf{X}) - p(\mathsf{X}) \right)^{2} + \operatorname{constant.} \end{split}$$

$$\ell(+1,f) = -f$$
 $\ell(-1,f) = \frac{1}{2} \cdot f^2$

The objective becomes:

$$\operatorname{Risk}(f) = \underset{P}{\mathbb{E}} \ell(+1, f(\mathsf{X})) + \underset{Q}{\mathbb{E}} \ell(-1, f(\mathsf{X}))$$
$$= \underset{P}{\mathbb{E}} - f(\mathsf{X}) + \underset{Q}{\mathbb{E}} \frac{1}{2} \cdot f(\mathsf{X})^{2}$$
$$= \underset{Q}{\mathbb{E}} \left[-p(\mathsf{X}) \cdot f(\mathsf{X}) + \frac{1}{2} \cdot f(\mathsf{X})^{2} \right]$$
$$= \underset{Q}{\mathbb{E}} \left(f(\mathsf{X}) - p(\mathsf{X}) \right)^{2} + \operatorname{constant.}$$

LSIF loss minimisation = least squares density fitting!

$$\min_{f} \mathop{\mathbb{E}}_{P} \ell(+1, f(\mathsf{X})) + \mathop{\mathbb{E}}_{Q} \ell(-1, f(\mathsf{X}))$$

captures two distinct problem settings

$$\min_{f} \mathop{\mathbb{E}}_{P} \ell(+1, f(\mathsf{X})) + \mathop{\mathbb{E}}_{Q} \ell(-1, f(\mathsf{X}))$$

captures two distinct problem settings

 $\begin{array}{l} \text{Density sublevel estimation} \\ \ell = \text{cost-sensitive loss} \end{array}$

$$\min_{f} \mathop{\mathbb{E}}_{P} \ell(+1, f(\mathsf{X})) + \mathop{\mathbb{E}}_{Q} \ell(-1, f(\mathsf{X}))$$

captures two distinct problem settings

Density sublevel estimation $\ell = \text{cost-sensitive loss}$

Density estimation $\ell = \text{proper loss}$

$$\min_{f} \mathop{\mathbb{E}}_{P} \ell(+1, f(\mathsf{X})) + \mathop{\mathbb{E}}_{Q} \ell(-1, f(\mathsf{X}))$$

captures two distinct problem settings

What problem lives in between?

Partially proper losses

Partial density estimation

The targets for the two problem settings we've seen are:

The full p(x) for density estimation

Partial density estimation

The targets for the two problem settings we've seen are:

The full p(x) for density estimation and a thresholded version for sublevel estimation

Partial density estimation

The targets for the two problem settings we've seen are:

The full p(x) for density estimation and a thresholded version for sublevel estimation

Natural intermediary: model the tail only

An ensemble of cost-sensitive losses

Density estimation seeks the entire family of sublevel sets

An ensemble of cost-sensitive losses

Density estimation seeks the entire family of sublevel sets

Each set is attainable with the α cost-sensitive loss

An ensemble of cost-sensitive losses

Density estimation seeks the entire family of sublevel sets

Each set is attainable with the α cost-sensitive loss

Combine losses for various values of α ?

Consider the cost-sensitive loss

$$\ell_{\mathrm{CS}}(+1,f;c) = (1-c) \cdot \llbracket f < c \rrbracket \qquad \ell_{\mathrm{CS}}(-1,f;c) = c \cdot \llbracket f > c \rrbracket$$

Consider the cost-sensitive loss

$$\ell_{\mathrm{CS}}(+1,f;c) = (1-c) \cdot \llbracket f < c \rrbracket \qquad \ell_{\mathrm{CS}}(-1,f;c) = c \cdot \llbracket f > c \rrbracket$$

Every proper loss is a mixture of cost-sensitive losses:

$$\ell(y,f) = \int_0^1 w(c) \cdot \ell_{\mathrm{CS}}(y,f;c) \,\mathrm{d}c.$$

Consider the cost-sensitive loss

$$\ell_{\mathrm{CS}}(+1,f;c) = (1-c) \cdot \llbracket f < c \rrbracket \qquad \ell_{\mathrm{CS}}(-1,f;c) = c \cdot \llbracket f > c \rrbracket$$

Every proper loss is a mixture of cost-sensitive losses:

$$\ell(y,f) = \int_0^1 w(c) \cdot \ell_{\mathrm{CS}}(y,f;c) \,\mathrm{d}c.$$

The weight function w determines modelling effort

Consider the cost-sensitive loss

$$\ell_{\mathrm{CS}}(+1,f;c) = (1-c) \cdot \llbracket f < c \rrbracket \qquad \ell_{\mathrm{CS}}(-1,f;c) = c \cdot \llbracket f > c \rrbracket$$

Every proper loss is a mixture of cost-sensitive losses:

$$\ell(y,f) = \int_0^1 w(c) \cdot \ell_{\mathrm{CS}}(y,f;c) \,\mathrm{d}c.$$

The weight function w determines modelling effort

Choose a weight which emphasises small c values

For square loss, w(c) = 1, i.e., all costs are equal

Weight functions for proper losses For the LSIF loss, we have smooth $w(c) = (1-c)^{-3}$

Weight functions for proper losses For the LSIF loss, we have smooth $w(c) = (1-c)^{-3}$

cost-sensitive loss, we have delta-function $w(c) = \delta_{c_0}(c)$

Weight functions for proper losses For the LSIF loss, we have smooth $w(c) = (1-c)^{-3}$

cost-sensitive loss, we have delta-function $w(c) = \delta_{c_0}(c)$

Natural intermediary: weight with partial support

Fix a proper loss ℓ with weight function w

Fix a proper loss ℓ with weight function w

Suppose for $c_0 \in (0,1)$, we modify the weight to

$$\bar{w}(c) = \llbracket c \le c_0 \rrbracket \cdot w(c)$$

Fix a proper loss ℓ with weight function w

Suppose for $c_0 \in (0,1)$, we modify the weight to

$$\bar{w}(c) = \llbracket c \le c_0 \rrbracket \cdot w(c)$$

Effect is to saturate the losses

Consider the cost-sensitive loss with $c_0 = \frac{1}{2}$,

$$\ell(+1,f) = \frac{1}{2} \cdot [\![f < 0]\!] \qquad \ell(-1,f) = \frac{1}{2} \cdot [\![f > 0]\!]$$

Consider the LSIF loss

$$\ell(+1,f) = 1 - f$$
 $\ell(-1,f) = \frac{1}{2} \cdot f^2$

Consider the modified LSIF loss

$$\ell(+1,f) = 1 - (f \wedge 1)$$
 $\ell(-1,f) = \frac{1}{2} \cdot (f \wedge 1)^2$

Partially proper losses

For the LSIF loss, the modified version

$$\bar{\ell}(+1,f) = [\alpha - f]_+$$
 $\bar{\ell}(-1,f) = \frac{1}{2} \cdot (f \wedge \alpha)^2$

is partially proper in the following sense

Partially proper losses

For the LSIF loss, the modified version

$$\overline{\ell}(+1,f) = [\alpha - f]_+$$
 $\overline{\ell}(-1,f) = \frac{1}{2} \cdot (f \wedge \alpha)^2$

is partially proper in the following sense

Exactly as desired for partial density estimation!

Partially proper losses For the LSIF loss, consider a further modification

$$\tilde{\ell}(+1,f) = [\alpha - f]_+$$
 $\tilde{\ell}(-1,f) = \frac{1}{2} \cdot f^2$

• only saturate the loss on positives

Partially proper losses For the LSIF loss, consider a further modification

$$\tilde{\ell}(+1,f) = [\alpha - f]_+$$
 $\tilde{\ell}(-1,f) = \frac{1}{2} \cdot f^2$

only saturate the loss on positives

Partially proper losses For the LSIF loss, consider a further modification

$$\tilde{\ell}(+1,f) = [\alpha - f]_+ \qquad \tilde{\ell}(-1,f) = \frac{1}{2} \cdot f^2$$

only saturate the loss on positives

Perform capped density estimation

• no longer have full flexibility for high density area

For data distribution P, the OC-SVM solves

$$\min_{f,\alpha} \underbrace{\mathbb{E} \left[\alpha - f(\mathsf{X}) \right]_{+}}_{\text{hinge loss}} + \underbrace{\frac{v}{2} \cdot \|f\|_{\mathcal{H}}^{2}}_{\text{regulariser}} - \underbrace{v \cdot \alpha}_{v-\text{SVM relic}}$$

For data distribution P, the OC-SVM solves

$$\min_{f,\alpha} \underbrace{\mathbb{E} \left[\alpha - f(\mathsf{X}) \right]_{+}}_{\text{hinge loss}} + \underbrace{\frac{v}{2} \cdot \|f\|_{\mathcal{H}}^{2}}_{\text{regulariser}} - \underbrace{v \cdot \alpha}_{v-\text{SVM relic}}$$

while we solve

$$\min_{f} \underbrace{\mathbb{E} \left[\alpha - f(\mathsf{X}) \right]_{+}}_{\mathbf{capped proper loss}} + \underbrace{\mathbb{E} \left[\frac{1}{2} \cdot f(\mathsf{X})^{2} \right]_{\mathcal{Q}}}_{\mathbf{background contrast}}$$

This talk

Take-home #1

Anomaly detection = binary classification

• distinguish samples against an implicit background

Take-home #2

Probabilistic anomaly detection = class-probability estimation

• can use familiar tools: logistic regression, boosting, ...

This talk

Take-home #1

Anomaly detection = binary classification

• distinguish samples against an implicit background

Take-home #2

Probabilistic anomaly detection = class-probability estimation

• can use familiar tools: logistic regression, boosting, ...

Kernel absorption

To obtain tail density probabilities, we propose to minimise

$$\min_{f} \mathop{\mathbb{E}}_{P} \left[\alpha - f(\mathsf{X}) \right]_{+} + \mathop{\mathbb{E}}_{Q} \frac{1}{2} \cdot f(\mathsf{X})^{2}$$

To obtain tail density probabilities, we propose to minimise

$$\min_{f} \mathop{\mathbb{E}}_{P} \left[\alpha - f(\mathsf{X}) \right]_{+} + \mathop{\mathbb{E}}_{Q} \frac{1}{2} \cdot f(\mathsf{X})^{2}$$

Practically, we may pick f from an RKHS $\mathcal H$ via

$$\min_{f} \mathop{\mathbb{E}}_{P} [\alpha - f(\mathsf{X})]_{+} + \mathop{\mathbb{E}}_{Q} \frac{1}{2} \cdot f(\mathsf{X})^{2} + \frac{\gamma}{2} \cdot ||f||_{\mathcal{H}}^{2}$$

To obtain tail density probabilities, we propose to minimise

$$\min_{f} \mathop{\mathbb{E}}_{P} \left[\alpha - f(\mathsf{X}) \right]_{+} + \mathop{\mathbb{E}}_{Q} \frac{1}{2} \cdot f(\mathsf{X})^{2}$$

Practically, we may pick f from an RKHS $\mathcal H$ via

$$\min_{f} \mathop{\mathbb{E}}_{P} \left[\alpha - f(\mathsf{X}) \right]_{+} + \mathop{\mathbb{E}}_{Q} \frac{1}{2} \cdot f(\mathsf{X})^{2} + \frac{\gamma}{2} \cdot \|f\|_{\mathcal{H}}^{2}$$

Convex, but requires computing a high-dimensional integral

To obtain tail density probabilities, we propose to minimise

$$\min_{f} \mathop{\mathbb{E}}_{P} \left[\alpha - f(\mathsf{X}) \right]_{+} + \mathop{\mathbb{E}}_{Q} \frac{1}{2} \cdot f(\mathsf{X})^{2}$$

Practically, we may pick f from an RKHS $\mathcal H$ via

$$\min_{f} \mathop{\mathbb{E}}_{P} \left[\alpha - f(\mathsf{X}) \right]_{+} + \mathop{\mathbb{E}}_{Q} \frac{1}{2} \cdot f(\mathsf{X})^{2} + \frac{\gamma}{2} \cdot \|f\|_{\mathcal{H}}^{2}$$

Convex, but requires computing a high-dimensional integral

A simple trick lets us side-step this

A kernel trick Observe that

$$\mathbb{E} \frac{1}{2} \cdot f(\mathsf{X})^2 + \frac{\gamma}{2} \cdot \|f\|_{\mathcal{H}}^2 = \|f\|_{L_2(\mu)}^2 + \frac{\gamma}{2} \cdot \|f\|_{\mathcal{H}}^2$$

• standard plus Hilbert-space square norm

A kernel trick Observe that

$$\mathbb{E}_{\underline{Q}} \frac{1}{2} \cdot f(\mathsf{X})^2 + \frac{\gamma}{2} \cdot \|f\|_{\mathcal{H}}^2 = \|f\|_{L_2(\mu)}^2 + \frac{\gamma}{2} \cdot \|f\|_{\mathcal{H}}^2$$

• standard plus Hilbert-space square norm

Fortuitously, we can write (McCullagh and Møller, 2006) $\|f\|_{L_2(\mu)}^2 + \gamma \cdot \|f\|_{\mathcal{H}}^2 = \|f\|_{\bar{\mathcal{H}}(\gamma,\mu)}^2$

for some modified RKHS $\bar{\mathcal{H}}(\gamma,\mu)$

• corresponding kernel \bar{k} modifies eigenvalues of k

A kernel trick Observe that

$$\mathbb{E}_{\underline{Q}} \frac{1}{2} \cdot f(\mathsf{X})^2 + \frac{\gamma}{2} \cdot \|f\|_{\mathcal{H}}^2 = \|f\|_{L_2(\mu)}^2 + \frac{\gamma}{2} \cdot \|f\|_{\mathcal{H}}^2$$

• standard plus Hilbert-space square norm

Fortuitously, we can write (McCullagh and Møller, 2006) $\|f\|_{L_2(\mu)}^2 + \gamma \cdot \|f\|_{\mathcal{H}}^2 = \|f\|_{\bar{\mathcal{H}}(\gamma,\mu)}^2$

for some modified RKHS $\bar{\mathcal{H}}(\gamma,\mu)$

• corresponding kernel \bar{k} modifies eigenvalues of k

This obviates the need for approximating the expectation!

A kernel trick: comments

Connection to point processes is unsurprising

• latter is scaled density estimation (Fithian & Hastie, 2013)

A kernel trick: comments

Connection to point processes is unsurprising

• latter is scaled density estimation (Fithian & Hastie, 2013)

Penalty $\|f\|^2_{ar{\mathcal{H}}(\gamma,\mu)}$ bakes in measure μ and regulariser

• model complexity plus discrimination

A kernel trick: comments

Connection to point processes is unsurprising

• latter is scaled density estimation (Fithian & Hastie, 2013)

Penalty $\|f\|^2_{ar{\mathcal{H}}(\gamma,\mu)}$ bakes in measure μ and regulariser

• model complexity plus discrimination

New kernel \bar{k} may not have analytic form

• can approximate with Nyström method

For data distribution P, the OC-SVM solves

For data distribution P, the OC-SVM solves

while we solve

For data distribution P, the OC-SVM solves

How do we control the threshold α ?

Alarm rate control

Parametrising anomaly level

To obtain tail density probabilities, we propose to minimise

$$\min_{f} \mathop{\mathbb{E}}_{P} \left[\alpha - f(\mathsf{X}) \right]_{+} + \frac{1}{2} \cdot \|f\|_{\bar{\mathcal{H}}(\gamma,\mu)}^{2}$$

Parametrising anomaly level

To obtain tail density probabilities, we propose to minimise

$$\min_{f} \mathop{\mathbb{E}}_{P} \left[\alpha - f(\mathsf{X}) \right]_{+} + \frac{1}{2} \cdot \|f\|_{\bar{\mathcal{H}}(\gamma,\mu)}^{2}$$

Choice of α determines density threshold

Parametrising anomaly level

To obtain tail density probabilities, we propose to minimise

$$\min_{f} \mathop{\mathbb{E}}_{P} \left[\alpha - f(\mathsf{X}) \right]_{+} + \frac{1}{2} \cdot \|f\|_{\bar{\mathcal{H}}(\gamma,\mu)}^{2}$$

Choice of α determines density threshold

More intuitive: given $v \in (0,1)$, implicitly use α_v such that

 $P(p(X) < \alpha_v) = v$

- quantile of the random variable p(X)
- v specifies the alarm rate of our predictor

Pinball loss

Recall that the median $lpha_{1/2}$ of a distribution P is

$$\alpha_{1/2} = \operatorname*{argmin}_{\alpha \in \mathbb{R}} \underset{P}{\mathbb{E}} |\mathsf{X} - \alpha|$$

Pinball loss Recall that the median $\alpha_{1/2}$ of a distribution *P* is

$$\alpha_{1/2} = \operatorname*{argmin}_{\alpha \in \mathbb{R}} \underset{P}{\mathbb{E}} |\mathsf{X} - \alpha|$$

More generally, the vth quantile of a distribution P is

$$\alpha_{v} = \underset{\alpha \in \mathbb{R}}{\operatorname{argmin}} \underset{P}{\mathbb{E}} \left[\phi_{\text{pin}}(\mathsf{X} - \alpha; v) \right]$$

for the pinball loss $\phi_{\rm pin}$

The pinball loss is equivalently

$$\phi_{\rm pin}(z; \mathbf{v}) = [z]_+ + \mathbf{v} \cdot z$$

The pinball loss is equivalently

$$\phi_{\text{pin}}(z; \mathbf{v}) = [z]_+ + \mathbf{v} \cdot z$$

Thus, we have

$$\mathbb{E}_{P}[\alpha - f(\mathsf{X})]_{+} = \mathbb{E}_{P}\left[\phi_{\text{pin}}(f(\mathsf{X}) - \alpha; \mathbf{v})\right] - \mathbf{v} \cdot \mathbb{E}_{P}[f(\mathsf{X})] + \mathbf{v} \cdot \alpha$$

The pinball loss is equivalently

$$\phi_{\rm pin}(z; \mathbf{v}) = [z]_+ + \mathbf{v} \cdot z$$

Thus, we have

$$\mathbb{E}_{\frac{P}{P}}[\alpha - f(\mathsf{X})]_{+} - \mathbf{v} \cdot \alpha = \mathbb{E}_{\frac{P}{P}}[\phi_{\text{pin}}(f(\mathsf{X}) - \alpha; \mathbf{v})] - \mathbf{v} \cdot \mathbb{E}_{\frac{P}{P}}[f(\mathsf{X})]$$

The pinball loss is equivalently

$$\phi_{\text{pin}}(z; \mathbf{v}) = [z]_+ + \mathbf{v} \cdot z$$

Thus, we have

$$\mathbb{E}_{\frac{P}{P}}[\alpha - f(\mathsf{X})]_{+} - \mathbf{v} \cdot \alpha = \mathbb{E}_{\frac{P}{P}}[\phi_{\text{pin}}(f(\mathsf{X}) - \alpha; \mathbf{v})] - \mathbf{v} \cdot \mathbb{E}_{\frac{P}{P}}[f(\mathsf{X})]$$

Thus, we may jointly minimise

$$\min_{f,\alpha} \mathbb{E}_{P} \left[\phi_{\text{pin}}(f(\mathsf{X}) - \alpha; \mathbf{v}) \right] - \mathbf{v} \cdot \mathbb{E}_{P} \left[f(\mathsf{X}) \right] + \frac{1}{2} \cdot \|f\|_{\mathcal{H}}^{2}$$

The pinball loss is equivalently

$$\phi_{\text{pin}}(z; \mathbf{v}) = [z]_+ + \mathbf{v} \cdot z$$

Thus, we have

$$\mathbb{E}_{\frac{P}{P}}[\alpha - f(\mathsf{X})]_{+} - \mathbf{v} \cdot \alpha = \mathbb{E}_{\frac{P}{P}}[\phi_{\text{pin}}(f(\mathsf{X}) - \alpha; \mathbf{v})] - \mathbf{v} \cdot \mathbb{E}_{\frac{P}{P}}[f(\mathsf{X})]$$

Thus, we may jointly minimise

$$\min_{f,\alpha} \mathbb{E}_{P} \left[\alpha - f(\mathsf{X}) \right]_{+} - \mathbf{v} \cdot \alpha + \frac{1}{2} \cdot \|f\|_{\mathcal{F}}^{2}$$

The pinball loss is equivalently

$$\phi_{\rm pin}(z;\mathbf{v}) = [z]_+ + \mathbf{v} \cdot z$$

Thus, we have

$$\mathbb{E}_{\frac{P}{P}}[\alpha - f(\mathsf{X})]_{+} - \mathbf{v} \cdot \alpha = \mathbb{E}_{\frac{P}{P}}[\phi_{\text{pin}}(f(\mathsf{X}) - \alpha; \mathbf{v})] - \mathbf{v} \cdot \mathbb{E}_{\frac{P}{P}}[f(\mathsf{X})]$$

Thus, we may jointly minimise

$$\min_{f,\alpha} \mathop{\mathbb{E}}_{P} \left[\alpha - f(\mathsf{X}) \right]_{+} - \mathbf{v} \cdot \alpha + \frac{1}{2} \cdot \|f\|_{\mathcal{H}}^{2}$$

and obtain α^* as the *v*th quantile of $f^*(X)$!

Summary: deconstructing one-class SVMs For data distribution *P*, the OC-SVM solves

Summary: deconstructing one-class SVMs For data distribution *P*, the OC-SVM solves

while we solve

Summary: deconstructing one-class SVMs For data distribution *P*, the OC-SVM solves

while we solve

Note this is just one special case of our framework

Empirical illustration

Qualitative results

Augment usps test instances with one-hot encoding of label

Qualitative results

Augment usps test instances with one-hot encoding of label

Identify inliers

Qualitative results

Augment usps test instances with one-hot encoding of label

Identify inliers and outliers

Quantitative results

We fit our model to a "normal" sample on three datasets

- usps: digit o
- sat: largest 3 classes
- art: $\sim mixture \ of \ Gaussians$

Evaluate classification performance on a test sample of normal and anomalous instances

Quantitative results: usps score distribution Scores for digit 0 on train and test set largely agree

Scores for digit 1–9 distinct, despite being unseen at train time

Quantitative results: alarm-miss curves

Summary

This talk

Take-home #1

Anomaly detection = binary classification

• distinguish samples against an implicit background

Take-home #2

Probabilistic anomaly detection = class-probability estimation

• can use familiar tools: logistic regression, boosting, ...

Deconstructing one-class SVMs

Pick an RKHS ${\mathfrak H}$ and desired anomaly fraction ${m v}\in(0,1)$

For data distribution P, the OC-SVM solves

Deconstructing one-class SVMs

Pick an RKHS ${\mathfrak H}$ and desired anomaly fraction ${m v}\in(0,1)$

For data distribution P, the OC-SVM solves

$$\min_{f,\alpha} \underbrace{\mathbb{E}_{p}[\alpha - f(\mathsf{X})]_{+}}_{\text{hinge-loss}} + \underbrace{\frac{v}{2} \cdot \|f\|_{\mathcal{H}}^{2}}_{\text{regulariser}} - \underbrace{v \cdot \alpha}_{v - \text{SVM-relic}}$$

Deconstructing one-class SVMs

Pick an RKHS \mathfrak{H} and desired anomaly fraction $v \in (0,1)$

For data distribution P, the OC-SVM solves

Questions nonetheless remain:

- implicit μ, γ for Gaussian kernel?
- avoiding need for density for minimum volume sets?
- Ink interpretation of robust versions of loss?

Thanks!

