One-class logistic regression \& friends

Probabilistic anomaly detection as loss minimisation

Aditya Krishna Menon Robert C. Williamson

The Australian National University

Australian
National
University

Jun 28th, 2018

Anomaly detection

Identify instances that deviate from some systematic pattern

Anomaly detection

Identify instances that deviate from some systematic pattern

Anomaly detection landscape

Statistical test

One-class SVM

Structural health monitoring

Network analysis

Nearest neighbour

Credit fraud

Anomaly detection landscape

Statistical test

Nearest neighbour

Structural health monitoring

Network analysis

One-class SVMs: enclosing ball view

Find the smallest ball enclosing most of the data

One-class SVMs: enclosing ball view

Find the smallest ball enclosing most of the data

One-class SVMs: origin separation view

Pick an RKHS \mathcal{H} and desired anomaly fraction $v \in(0,1)$

One-class SVMs: origin separation view

Pick an RKHS \mathcal{H} and desired anomaly fraction $v \in(0,1)$

Find $f \in \mathcal{H}$ and offset $\alpha \in \mathbb{R}$ to separate data from origin

One-class SVMs: origin separation view

Pick an RKHS \mathcal{H} and desired anomaly fraction $v \in(0,1)$
Find $f \in \mathcal{H}$ and offset $\alpha \in \mathbb{R}$ to separate data from origin
For data distribution P,

$$
\min _{f, \alpha} \underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}+\frac{v}{2} \cdot\|f\|_{\mathscr{H}}^{2}-\quad v \cdot \alpha
$$

One-class SVMs: origin separation view

Pick an RKHS \mathcal{H} and desired anomaly fraction $v \in(0,1)$
Find $f \in \mathcal{H}$ and offset $\alpha \in \mathbb{R}$ to separate data from origin
For data distribution P,

$$
\min _{f, \alpha} \underbrace{\mathbb{E}}_{\text {hinge loss }}[\alpha-f(\mathrm{X})]_{+}+\underbrace{\frac{v}{2} \cdot\|f\|_{\mathcal{H}}^{2}}_{\text {regulariser }}-\underbrace{v \cdot \alpha}_{v-\text { SVM relic }}
$$

One-class SVMs: pros and cons
 OC-SVMs inherit the standard SVM's strengths and weaknesses

\checkmark convex objective
\checkmark focus effort on decision boundary

One-class SVMs: pros and cons
 OC-SVMs inherit the standard SVM's strengths and weaknesses

\checkmark convex objective
\checkmark focus effort on decision boundary
\times doesn't focus on probability of instance being anomalous

One-class SVMs: pros and cons

OC-SVMs inherit the standard SVM's strengths and weaknesses
\checkmark convex objective
\checkmark focus effort on decision boundary
\times doesn't focus on probability of instance being anomalous

Degree of abnormality

One-class SVMs: pros and cons

OC-SVMs inherit the standard SVM's strengths and weaknesses
\checkmark convex objective
\checkmark focus effort on decision boundary
\times doesn't focus on probability of instance being anomalous
\times unclear Bayes-optimal solution

Degree of abnormality

This talk

Take-home \#1

Anomaly detection $=$ binary classification

- distinguish samples against an implicit background

This talk

Take-home \#1

Anomaly detection $=$ binary classification

- distinguish samples against an implicit background

Take-home \#2

Probabilistic anomaly detection = class-probability estimation

- can use familiar tools: logistic regression, boosting, ...

This talk

Take-home \#1

Anomaly detection $=$ binary classification

- distinguish samples against an implicit background

Take-home \#2

Probabilistic anomaly detection = class-probability estimation

- can use familiar tools: logistic regression, boosting, ...

Surprise

Specific kind of OC-SVM turns out to be a special case!

- gives a different perspective on underlying components

Deconstructing one-class SVMs

Pick an RKHS \mathcal{H} and desired anomaly fraction $v \in(0,1)$
For data distribution P, the OC-SVM solves

Deconstructing one-class SVMs

Pick an RKHS \mathcal{H} and desired anomaly fraction $v \in(0,1)$
For data distribution P, the OC-SVM solves

We give a different interpretation for the OC-SVM's components

Anomaly detection as classification

Density sublevel view of anomaly detection

Pick a reference measure μ (e.g., Lebesgue)

Density sublevel view of anomaly detection

 Pick a reference measure μ (e.g., Lebesgue)Suppose our data distribution P has density $p \doteq \frac{\mathrm{~d} P}{\mathrm{~d} \mu}$

Density sublevel view of anomaly detection

 Pick a reference measure μ (e.g., Lebesgue)Suppose our data distribution P has density $p \doteq \frac{\mathrm{~d} P}{\mathrm{~d} \mu}$
Define anomalies to be instances with low density

Recap: binary classification

Suppose we have positive and negative data distributions P, Q

Recap: binary classification

Suppose we have positive and negative data distributions P, Q

Classify instances based on dominant density

Recap: binary classification

Suppose we have positive and negative data distributions P, Q

Classify instances based on dominant density

Anomaly detection as binary classification

Consider classification of data distribution P versus uniform Q

Anomaly detection as binary classification

 Consider classification of data distribution P versus uniform Q

Anomaly detection = classification against uniform background!
(Steinwart \& Scovel, 2005)

Anomaly detection as binary classification

Fix some density threshold $\alpha>0$

Anomaly detection seeks a scorer $f: X \rightarrow \mathbb{R}$, where ${ }^{1}$

$$
f(x)>\alpha \Longleftrightarrow p(x)>\alpha
$$

Anomaly detection as binary classification

Fix some density threshold $\alpha>0$

Anomaly detection seeks a scorer $f: X \rightarrow \mathbb{R}$, where ${ }^{1}$

$$
f(x)>\alpha \Longleftrightarrow p(x)>\alpha
$$

(Steinwart \& Scovel, 2005): classify data P against background Q :

$$
\min _{f} \underset{P}{\mathbb{E}} \llbracket f(\mathrm{X})<\alpha \rrbracket+\alpha \cdot \underset{Q}{\mathbb{E}} \llbracket f(\mathrm{X})>\alpha \rrbracket
$$

- cost-weighted classification loss

[^0]
Anomaly detection as binary classification

Fix some density threshold $\alpha>0$

Anomaly detection seeks a scorer $f: X \rightarrow \mathbb{R}$, where ${ }^{1}$

$$
f(x)>\alpha \Longleftrightarrow p(x)>\alpha
$$

(Steinwart \& Scovel, 2005): classify data P against background Q :

$$
\min _{f} \mathbb{E}_{P}^{\mathbb{E}} \llbracket f(\mathrm{X})<\alpha \rrbracket+\alpha \cdot \underset{Q}{\mathbb{E}} \llbracket f(\mathrm{X})>\alpha \rrbracket
$$

- cost-weighted classification loss

Anomaly detection as binary classification!

[^1]Anomaly detection as binary classification

Anomaly detection as binary classification

Anomaly detection as binary classification

This talk

Take-home \#1

Anomaly detection $=$ binary classification

- distinguish samples against an implicit background

This talk

Take-home \#1

Anomaly detection $=$ binary classification

- distinguish samples against an implicit background

Take-home \#2
Probabilistic anomaly detection = class-probability estimation

- can use familiar tools: logistic regression, boosting, ...

Changing the loss function

What if we instead minimise

$$
\min _{f} \underset{P}{\mathbb{E}} \ell(+1, f(\mathrm{X}))+\underset{Q}{\mathbb{E}} \ell(-1, f(\mathrm{X}))
$$

for a generic loss $\ell:\{ \pm 1\} \times \mathbb{R} \rightarrow \mathbb{R}$?

Changing the loss function

What if we instead minimise

$$
\min _{f} \underset{P}{\mathbb{E}} \ell(+1, f(\mathrm{X}))+\underset{Q}{\mathbb{E}} \ell(-1, f(\mathrm{X}))
$$

for a generic loss $\ell:\{ \pm 1\} \times \mathbb{R} \rightarrow \mathbb{R}$?

Result will be exactly per discrimination of P versus Q

Changing the loss function

What if we instead minimise

$$
\min _{f} \underset{P}{\mathbb{E}} \ell(+1, f(\mathrm{X}))+\underset{Q}{\mathbb{E}} \ell(-1, f(\mathrm{X}))
$$

for a generic loss $\ell:\{ \pm 1\} \times \mathbb{R} \rightarrow \mathbb{R}$?
Result will be exactly per discrimination of P versus Q
e.g., for proper losses, we recover $p(x)$

- i.e., we perform density estimation

A running example

Consider the LSIF loss (Kanamori et al., 2009)

$$
\ell(+1, f)=-f \quad \ell(-1, f)=\frac{1}{2} \cdot f^{2}
$$

A running example

Consider the LSIF loss (Kanamori et al., 2009)

$$
\ell(+1, f)=-f \quad \ell(-1, f)=\frac{1}{2} \cdot f^{2}
$$

The objective becomes:

A running example

Consider the LSIF loss (Kanamori et al., 2009)

$$
\ell(+1, f)=-f \quad \ell(-1, f)=\frac{1}{2} \cdot f^{2}
$$

The objective becomes:

$$
\operatorname{Risk}(f)=\underset{P}{\mathbb{E}} \ell(+1, f(\mathrm{X}))+\underset{Q}{\mathbb{E}} \ell(-1, f(\mathrm{X}))
$$

A running example

Consider the LSIF loss (Kanamori et al., 2009)

$$
\ell(+1, f)=-f \quad \ell(-1, f)=\frac{1}{2} \cdot f^{2}
$$

The objective becomes:

$$
\begin{aligned}
\operatorname{Risk}(f) & =\underset{P}{\mathbb{E}} \ell(+1, f(\mathrm{X}))+\underset{Q}{\mathbb{E}} \ell(-1, f(\mathrm{X})) \\
& =\underset{P}{\mathbb{E}}-f(\mathrm{X})+\underset{Q}{\mathbb{E}} \frac{1}{2} \cdot f(\mathrm{X})^{2}
\end{aligned}
$$

A running example

Consider the LSIF loss (Kanamori et al., 2009)

$$
\ell(+1, f)=-f \quad \ell(-1, f)=\frac{1}{2} \cdot f^{2}
$$

The objective becomes:

$$
\begin{aligned}
\operatorname{Risk}(f) & =\underset{P}{\mathbb{E}} \ell(+1, f(\mathrm{X}))+\underset{Q}{\mathbb{E}} \ell(-1, f(\mathrm{X})) \\
& =\underset{P}{\mathbb{E}}-f(\mathrm{X})+\underset{Q}{\mathbb{E}} \frac{1}{2} \cdot f(\mathrm{X})^{2} \\
& =\underset{Q}{\mathbb{E}}\left[-p(\mathrm{X}) \cdot f(\mathrm{X})+\frac{1}{2} \cdot f(\mathrm{X})^{2}\right]
\end{aligned}
$$

A running example

Consider the LSIF loss (Kanamori et al., 2009)

$$
\ell(+1, f)=-f \quad \ell(-1, f)=\frac{1}{2} \cdot f^{2}
$$

The objective becomes:

$$
\begin{aligned}
\operatorname{Risk}(f) & =\underset{P}{\mathbb{E}} \ell(+1, f(\mathrm{X}))+\underset{Q}{\mathbb{E}} \ell(-1, f(\mathrm{X})) \\
& =\underset{P}{\mathbb{E}}-f(\mathrm{X})+\underset{Q}{\mathbb{E}} \frac{1}{2} \cdot f(\mathrm{X})^{2} \\
& =\underset{Q}{\mathbb{E}}\left[-p(\mathrm{X}) \cdot f(\mathrm{X})+\frac{1}{2} \cdot f(\mathrm{X})^{2}\right] \\
& =\underset{Q}{\mathbb{E}}(f(\mathrm{X})-p(\mathrm{X}))^{2}+\text { constant }
\end{aligned}
$$

A running example

Consider the LSIF loss (Kanamori et al., 2009)

$$
\ell(+1, f)=-f \quad \ell(-1, f)=\frac{1}{2} \cdot f^{2}
$$

The objective becomes:

$$
\begin{aligned}
\operatorname{Risk}(f) & =\underset{P}{\mathbb{E}} \ell(+1, f(\mathrm{X}))+\underset{Q}{\mathbb{E}} \ell(-1, f(\mathrm{X})) \\
& =\underset{P}{\mathbb{E}}-f(\mathrm{X})+\underset{Q}{\mathbb{E}} \frac{1}{2} \cdot f(\mathrm{X})^{2} \\
& =\underset{Q}{\mathbb{E}}\left[-p(\mathrm{X}) \cdot f(\mathrm{X})+\frac{1}{2} \cdot f(\mathrm{X})^{2}\right] \\
& =\underset{Q}{\mathbb{E}}(f(\mathrm{X})-p(\mathrm{X}))^{2}+\text { constant } .
\end{aligned}
$$

LSIF loss minimisation = least squares density fitting!

State of play

The general objective

$$
\min _{f} \underset{P}{\mathbb{E}} \ell(+1, f(\mathrm{X}))+\underset{Q}{\mathbb{E}} \ell(-1, f(\mathrm{X}))
$$

captures two distinct problem settings

State of play

The general objective

$$
\min _{f} \underset{P}{\mathbb{E}} \ell(+1, f(\mathrm{X}))+\underset{Q}{\mathbb{E}} \ell(-1, f(\mathrm{X}))
$$

captures two distinct problem settings

Density sublevel estimation
$\ell=$ cost-sensitive loss

State of play

The general objective

$$
\min _{f} \underset{P}{\mathbb{E}} \ell(+1, f(\mathrm{X}))+\underset{Q}{\mathbb{E}} \ell(-1, f(\mathrm{X}))
$$

captures two distinct problem settings

Density sublevel estimation
$\ell=$ cost-sensitive loss

State of play

The general objective

$$
\min _{f} \underset{P}{\mathbb{E}} \ell(+1, f(\mathrm{X}))+\underset{Q}{\mathbb{E}} \ell(-1, f(\mathrm{X}))
$$

captures two distinct problem settings

Partially proper losses

Partial density estimation

The targets for the two problem settings we've seen are:

The full $p(x)$ for density estimation

Partial density estimation

The targets for the two problem settings we've seen are:

The full $p(x)$ for density estimation and a thresholded version for sublevel estimation

Partial density estimation

The targets for the two problem settings we've seen are:

The full $p(x)$ for density estimation and a thresholded version for sublevel estimation

Natural intermediary: model the tail only

An ensemble of cost-sensitive losses

Density estimation seeks the entire family of sublevel sets

An ensemble of cost-sensitive losses

Density estimation seeks the entire family of sublevel sets

Each set is attainable with the α cost-sensitive loss

An ensemble of cost-sensitive losses

Density estimation seeks the entire family of sublevel sets

Each set is attainable with the α cost-sensitive loss

Combine losses for various values of α ?

Weight functions for proper losses

Consider the cost-sensitive loss

$$
\ell_{\mathrm{CS}}(+1, f ; c)=(1-c) \cdot \llbracket f<c \rrbracket \quad \ell_{\mathrm{CS}}(-1, f ; c)=c \cdot \llbracket f>c \rrbracket
$$

Weight functions for proper losses

Consider the cost-sensitive loss

$$
\ell_{\mathrm{CS}}(+1, f ; c)=(1-c) \cdot \llbracket f<c \rrbracket \quad \ell_{\mathrm{CS}}(-1, f ; c)=c \cdot \llbracket f>c \rrbracket
$$

Every proper loss is a mixture of cost-sensitive losses:

$$
\ell(y, f)=\int_{0}^{1} w(c) \cdot \ell_{\mathrm{CS}}(y, f ; c) \mathrm{d} c .
$$

Weight functions for proper losses

Consider the cost-sensitive loss

$$
\ell_{\mathrm{CS}}(+1, f ; c)=(1-c) \cdot \llbracket f<c \rrbracket \quad \ell_{\mathrm{CS}}(-1, f ; c)=c \cdot \llbracket f>c \rrbracket
$$

Every proper loss is a mixture of cost-sensitive losses:

$$
\ell(y, f)=\int_{0}^{1} w(c) \cdot \ell_{\mathrm{CS}}(y, f ; c) \mathrm{d} c .
$$

The weight function w determines modelling effort

Weight functions for proper losses

Consider the cost-sensitive loss

$$
\ell_{\mathrm{CS}}(+1, f ; c)=(1-c) \cdot \llbracket f<c \rrbracket \quad \ell_{\mathrm{CS}}(-1, f ; c)=c \cdot \llbracket f>c \rrbracket
$$

Every proper loss is a mixture of cost-sensitive losses:

$$
\ell(y, f)=\int_{0}^{1} w(c) \cdot \ell_{\mathrm{CS}}(y, f ; c) \mathrm{d} c .
$$

The weight function w determines modelling effort
Choose a weight which emphasises small c values

Weight functions for proper losses

For square loss, $w(c)=1$, i.e., all costs are equal

Weight functions for proper losses

For the LSIF loss, we have smooth $w(c)=(1-c)^{-3}$

Weight functions for proper losses

For the LSIF loss, we have smooth $w(c)=(1-c)^{-3}$
cost-sensitive loss, we have delta-function $w(c)=\delta_{c_{0}}(c)$

Weight functions for proper losses

For the LSIF loss, we have smooth $w(c)=(1-c)^{-3}$
cost-sensitive loss, we have delta-function $w(c)=\delta_{c_{0}}(c)$

Natural intermediary: weight with partial support

Partially supported weight functions

Fix a proper loss ℓ with weight function w

Partially supported weight functions

Fix a proper loss ℓ with weight function w

Suppose for $c_{0} \in(0,1)$, we modify the weight to

$$
\bar{w}(c)=\llbracket c \leq c_{0} \rrbracket \cdot w(c)
$$

Partially supported weight functions

Fix a proper loss ℓ with weight function w
Suppose for $c_{0} \in(0,1)$, we modify the weight to

$$
\bar{w}(c)=\llbracket c \leq c_{0} \rrbracket \cdot w(c)
$$

Fact

For $\alpha=\frac{c_{0}}{1-c_{0}}$, the loss corresponding to \bar{w} is

$$
\bar{\ell}(+1, f)=\ell(+1, f \wedge \alpha) \quad \bar{\ell}(-1, f)=\ell(-1, f \wedge \alpha)
$$

Effect is to saturate the losses

Partially supported weight functions

Consider the cost-sensitive loss with $c_{0}=\frac{1}{2}$,

$$
\ell(+1, f)=\frac{1}{2} \cdot \llbracket f<0 \rrbracket \quad \ell(-1, f)=\frac{1}{2} \cdot \llbracket f>0 \rrbracket
$$

Partially supported weight functions

Consider the LSIF loss

$$
\ell(+1, f)=1-f \quad \ell(-1, f)=\frac{1}{2} \cdot f^{2}
$$

Partially supported weight functions

Consider the modified LSIF loss

$$
\ell(+1, f)=1-(f \wedge 1) \quad \ell(-1, f)=\frac{1}{2} \cdot(f \wedge 1)^{2}
$$

Partially proper losses

For the LSIF loss, the modified version

$$
\bar{\ell}(+1, f)=[\alpha-f]_{+} \quad \bar{\ell}(-1, f)=\frac{1}{2} \cdot(f \wedge \alpha)^{2}
$$

is partially proper in the following sense

Partially proper losses

For the LSIF loss, the modified version

$$
\bar{\ell}(+1, f)=[\alpha-f]_{+} \quad \bar{\ell}(-1, f)=\frac{1}{2} \cdot(f \wedge \alpha)^{2}
$$

is partially proper in the following sense

Fact

The optimal prediction under $\bar{\ell}$ is

$$
f(x) \in \begin{cases}{[\alpha,+\infty)} & \text { if } p(x)>\alpha \\ p(x) & \text { if } p(x)<\alpha\end{cases}
$$

Exactly as desired for partial density estimation!

Partially proper losses

For the LSIF loss, consider a further modification

$$
\tilde{\ell}(+1, f)=[\alpha-f]_{+} \quad \tilde{\ell}(-1, f)=\frac{1}{2} \cdot f^{2}
$$

- only saturate the loss on positives

Partially proper losses

For the LSIF loss, consider a further modification

$$
\tilde{\ell}(+1, f)=[\alpha-f]_{+} \quad \tilde{\ell}(-1, f)=\frac{1}{2} \cdot f^{2}
$$

- only saturate the loss on positives

Fact

The optimal prediction under $\tilde{\ell}$ is

$$
f(x) \in \begin{cases}\alpha & \text { if } p(x)>\alpha \\ p(x) & \text { if } p(x)<\alpha\end{cases}
$$

Partially proper losses

For the LSIF loss, consider a further modification

$$
\tilde{\ell}(+1, f)=[\alpha-f]_{+} \quad \tilde{\ell}(-1, f)=\frac{1}{2} \cdot f^{2}
$$

- only saturate the loss on positives

Fact

The optimal prediction under $\tilde{\ell}$ is

$$
f(x) \in \begin{cases}\alpha & \text { if } p(x)>\alpha \\ p(x) & \text { if } p(x)<\alpha\end{cases}
$$

Perform capped density estimation

- no longer have full flexibility for high density area

Comparison to one-class SVMs

For data distribution P, the OC-SVM solves

Comparison to one-class SVMs

For data distribution P, the OC-SVM solves

while we solve

This talk

Take-home \#1

Anomaly detection $=$ binary classification

- distinguish samples against an implicit background

Take-home \#2

Probabilistic anomaly detection = class-probability estimation

- can use familiar tools: logistic regression, boosting, ...

This talk

Take-home \#1

Anomaly detection $=$ binary classification

- distinguish samples against an implicit background

Take-home \#2

Probabilistic anomaly detection = class-probability estimation

- can use familiar tools: logistic regression, boosting, ...

Surprise

Specific kind of OC-SVM turns out to be a special case!

- gives a different perspective on underlying components

Kernel absorption

Partial density estimation

To obtain tail density probabilities, we propose to minimise

$$
\min _{f} \underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}+\underset{Q}{\mathbb{E}} \frac{1}{2} \cdot f(\mathrm{X})^{2}
$$

Partial density estimation

To obtain tail density probabilities, we propose to minimise

$$
\min _{f} \underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}+\underset{Q}{\mathbb{E}} \frac{1}{2} \cdot f(\mathrm{X})^{2}
$$

Practically, we may pick f from an RKHS \mathcal{H} via

$$
\min _{f} \underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}+\underset{Q}{\mathbb{E}} \frac{1}{2} \cdot f(\mathrm{X})^{2}+\frac{\gamma}{2} \cdot\|f\|_{\mathcal{H}}^{2}
$$

Partial density estimation

To obtain tail density probabilities, we propose to minimise

$$
\min _{f} \underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}+\underset{Q}{\mathbb{E}} \frac{1}{2} \cdot f(\mathrm{X})^{2}
$$

Practically, we may pick f from an RKHS \mathcal{H} via

$$
\min _{f} \underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}+\underset{Q}{\mathbb{E}} \frac{1}{2} \cdot f(\mathrm{X})^{2}+\frac{\gamma}{2} \cdot\|f\|_{\mathscr{H}}^{2}
$$

Convex, but requires computing a high-dimensional integral

Partial density estimation

To obtain tail density probabilities, we propose to minimise

$$
\min _{f} \underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}+\underset{Q}{\mathbb{E}} \frac{1}{2} \cdot f(\mathrm{X})^{2}
$$

Practically, we may pick f from an RKHS \mathcal{H} via

$$
\min _{f} \underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}+\underset{Q}{\mathbb{E}} \frac{1}{2} \cdot f(\mathrm{X})^{2}+\frac{\gamma}{2} \cdot\|f\|_{\mathcal{H}}^{2}
$$

Convex, but requires computing a high-dimensional integral
A simple trick lets us side-step this

A kernel trick

Observe that

$$
\underset{Q}{\mathbb{E}} \frac{1}{2} \cdot f(\mathrm{X})^{2}+\frac{\gamma}{2} \cdot\|f\|_{\mathcal{H}}^{2}=\|f\|_{L_{2}(\mu)}^{2}+\frac{\gamma}{2} \cdot\|f\|_{\mathcal{H}}^{2}
$$

- standard plus Hilbert-space square norm

A kernel trick

Observe that

$$
\underset{Q}{\mathbb{E}} \frac{1}{2} \cdot f(\mathrm{X})^{2}+\frac{\gamma}{2} \cdot\|f\|_{\mathscr{H}}^{2}=\|f\|_{L_{2}(\mu)}^{2}+\frac{\gamma}{2} \cdot\|f\|_{\mathscr{H}}^{2}
$$

- standard plus Hilbert-space square norm

Fortuitously, we can write (McCullagh and Møller, 2006)

$$
\|f\|_{L_{2}(\mu)}^{2}+\gamma \cdot\|f\|_{\mathscr{H}}^{2}=\|f\|_{\mathcal{H}(\gamma, \mu)}^{2}
$$

for some modified RKHS $\overline{\mathcal{H}}(\gamma, \mu)$

- corresponding kernel \bar{k} modifies eigenvalues of k

A kernel trick

Observe that

$$
\underset{Q}{\mathbb{E}} \frac{1}{2} \cdot f(\mathrm{X})^{2}+\frac{\gamma}{2} \cdot\|f\|_{\mathcal{H}}^{2}=\|f\|_{L_{2}(\mu)}^{2}+\frac{\gamma}{2} \cdot\|f\|_{\mathcal{H}}^{2}
$$

- standard plus Hilbert-space square norm

Fortuitously, we can write (McCullagh and Møller, 2006)

$$
\|f\|_{L_{2}(\mu)}^{2}+\gamma \cdot\|f\|_{\mathscr{H}}^{2}=\|f\|_{\mathcal{H}(\gamma, \mu)}^{2}
$$

for some modified RKHS $\overline{\mathcal{H}}(\gamma, \mu)$

- corresponding kernel \bar{k} modifies eigenvalues of k

This obviates the need for approximating the expectation!

A kernel trick: comments

Connection to point processes is unsurprising

- latter is scaled density estimation (Fithian \& Hastie, 2013)

A kernel trick: comments

Connection to point processes is unsurprising

- latter is scaled density estimation (Fithian \& Hastie, 2013)

Penalty $\|f\|_{\tilde{\mathcal{H}}(\gamma, \mu)}^{2}$ bakes in measure μ and regulariser

- model complexity plus discrimination

A kernel trick: comments

Connection to point processes is unsurprising

- latter is scaled density estimation (Fithian \& Hastie, 2013)

Penalty $\|f\|_{\tilde{\mathcal{H}}(\gamma, \mu)}^{2}$ bakes in measure μ and regulariser

- model complexity plus discrimination

New kernel \bar{k} may not have analytic form

- can approximate with Nyström method

Comparison to one-class SVMs

For data distribution P, the OC-SVM solves

Comparison to one-class SVMs

For data distribution P, the OC-SVM solves

$$
\min _{f, \alpha} \underbrace{\mathbb{E}[\alpha-f(\mathrm{X})]_{+}}_{\text {hinge loss }}+\underbrace{\frac{v}{P} \cdot\|f\|_{\mathfrak{H}}^{2}}_{\text {regulariser }}-\underbrace{v \cdot \alpha}_{v-\text { SVM relic }}
$$

while we solve

$$
\min _{f} \underbrace{\underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}}_{\text {capped proper loss }}+\underbrace{\frac{1}{P} \cdot\|f\|_{\tilde{\mathcal{H}}(\gamma, \mu)}^{2}}_{\text {regulariser }}
$$

Comparison to one-class SVMs

For data distribution P, the OC-SVM solves

$$
\min _{f, \alpha} \underbrace{\mathbb{E}[\alpha-f(\mathrm{X})]_{+}}_{\text {hinge loss }}+\underbrace{\frac{v}{P} \cdot\|f\|_{\mathfrak{H}}^{2}}_{\text {regulariser }}-\underbrace{v \cdot \alpha}_{v-\text { SVM relic }}
$$

while we solve

$$
\min _{f} \underbrace{\underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}}_{\text {capped proper loss }}+\underbrace{\frac{1}{P} \cdot\|f\|_{\tilde{\mathcal{H}}(\gamma, \mu)}^{2}}_{\text {regulariser }}
$$

How do we control the threshold α ?

Alarm rate control

Parametrising anomaly level

To obtain tail density probabilities, we propose to minimise

$$
\min _{f} \underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}+\frac{1}{2} \cdot\|f\|_{\tilde{\mathcal{H}}(\gamma, \mu)}^{2}
$$

Parametrising anomaly level

To obtain tail density probabilities, we propose to minimise

$$
\min _{f}{\underset{P}{P}}_{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}+\frac{1}{2} \cdot\|f\|_{\mathfrak{H}(\gamma, \mu)}^{2}
$$

Choice of α determines density threshold

Parametrising anomaly level

To obtain tail density probabilities, we propose to minimise

$$
\min _{f} \underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}+\frac{1}{2} \cdot\|f\|_{\mathfrak{H}(\gamma, \mu)}^{2}
$$

Choice of α determines density threshold
More intuitive: given $v \in(0,1)$, implicitly use α_{v} such that

$$
P\left(p(\mathrm{X})<\alpha_{v}\right)=v
$$

- quantile of the random variable $p(\mathrm{X})$
- v specifies the alarm rate of our predictor

Pinball loss

Recall that the median $\alpha_{1 / 2}$ of a distribution P is

$$
\alpha_{1 / 2}=\underset{\alpha \in \mathbb{R}}{\operatorname{argmin}} \underset{P}{\mathbb{E}}|\mathrm{X}-\alpha|
$$

Pinball loss

Recall that the median $\alpha_{1 / 2}$ of a distribution P is

$$
\alpha_{1 / 2}=\underset{\alpha \in \mathbb{R}}{\operatorname{argmin}} \underset{P}{\mathbb{E}}|\mathrm{X}-\alpha|
$$

More generally, the v th quantile of a distribution P is

$$
\alpha_{v}=\underset{\alpha \in \mathbb{R}}{\operatorname{argmin}} \underset{P}{\mathbb{E}}\left[\phi_{\text {pin }}(\mathrm{X}-\alpha ; v)\right]
$$

for the pinball loss $\phi_{\text {pin }}$

Relating the hinge and pinball loss

Fact
The pinball loss is equivalently

$$
\phi_{\text {pin }}(z ; v)=[z]_{+}+v \cdot z
$$

Relating the hinge and pinball loss

Fact

The pinball loss is equivalently

$$
\phi_{\mathrm{pin}}(z ; v)=[z]_{+}+v \cdot z
$$

Thus, we have

$$
\underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}=\underset{P}{\mathbb{E}}\left[\phi_{\text {pin }}(f(\mathrm{X})-\alpha ; v)\right]-v \cdot \underset{P}{\mathbb{E}}[f(\mathrm{X})]+v \cdot \alpha
$$

Relating the hinge and pinball loss

Fact

The pinball loss is equivalently

$$
\phi_{\text {pin }}(z ; v)=[z]_{+}+v \cdot z
$$

Thus, we have

$$
\underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}-v \cdot \alpha=\underset{P}{\mathbb{E}}\left[\phi_{\text {pin }}(f(\mathrm{X})-\alpha ; v)\right]-v \cdot \underset{P}{\mathbb{E}}[f(\mathrm{X})]
$$

Relating the hinge and pinball loss

Fact

The pinball loss is equivalently

$$
\phi_{\text {pin }}(z ; v)=[z]_{+}+v \cdot z
$$

Thus, we have

$$
\underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}-v \cdot \alpha=\underset{P}{\mathbb{E}}\left[\phi_{\text {pin }}(f(\mathrm{X})-\alpha ; v)\right]-v \cdot \underset{P}{\mathbb{E}}[f(\mathrm{X})]
$$

Thus, we may jointly minimise

$$
\min _{f, \alpha} \underset{P}{\mathbb{E}}\left[\phi_{\mathrm{pin}}(f(\mathrm{X})-\alpha ; v)\right]-v \cdot \underset{P}{\mathbb{E}}[f(\mathrm{X})]+\frac{1}{2} \cdot\|f\|_{\tilde{\mathcal{H}}}^{2}
$$

Relating the hinge and pinball loss

Fact

The pinball loss is equivalently

$$
\phi_{\text {pin }}(z ; v)=[z]_{+}+v \cdot z
$$

Thus, we have

$$
\underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}-v \cdot \alpha=\underset{P}{\mathbb{E}}\left[\phi_{\text {pin }}(f(\mathrm{X})-\alpha ; v)\right]-v \cdot \underset{P}{\mathbb{E}}[f(\mathrm{X})]
$$

Thus, we may jointly minimise

$$
\min _{f, \alpha} \underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}-v \cdot \alpha+\frac{1}{2} \cdot\|f\|_{\tilde{\mathcal{H}}}^{2}
$$

Relating the hinge and pinball loss

Fact

The pinball loss is equivalently

$$
\phi_{\text {pin }}(z ; v)=[z]_{+}+v \cdot z
$$

Thus, we have

$$
\underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}-v \cdot \alpha=\underset{P}{\mathbb{E}}\left[\phi_{\text {pin }}(f(\mathrm{X})-\alpha ; v)\right]-v \cdot \underset{P}{\mathbb{E}}[f(\mathrm{X})]
$$

Thus, we may jointly minimise

$$
\min _{f, \alpha} \underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}-v \cdot \alpha+\frac{1}{2} \cdot\|f\|_{\tilde{\mathcal{H}}}^{2}
$$

and obtain α^{*} as the v th quantile of $f^{*}(\mathrm{X})$!

Summary: deconstructing one-class SVMs

 For data distribution P, the OC-SVM solves

Summary: deconstructing one-class SVMs

 For data distribution P, the OC-SVM solves
while we solve

Summary: deconstructing one-class SVMs

 For data distribution P, the OC-SVM solves$$
\min _{f, \alpha} \underbrace{\underset{P}{\mathbb{E}}[\alpha-f(\mathrm{X})]_{+}}_{\text {hinge loss }}+\underbrace{\frac{v}{2} \cdot\|f\|_{\mathcal{H}}^{2}}_{\text {regulariser }}-\underbrace{v \cdot \alpha}_{v-\text { SVM relic }}
$$

while we solve

Note this is just one special case of our framework

Empirical illustration

Qualitative results

Augment usps test instances with one-hot encoding of label

Qualitative results

Augment usps test instances with one-hot encoding of label
Identify inliers

Qualitative results

Augment usps test instances with one-hot encoding of label
Identify inliers and outliers

10 | 0 |
| :---: |
| 10 |

Quantitative results

We fit our model to a "normal" sample on three datasets

- usps: digit o
- sat: largest 3 classes
- art: ~ mixture of Gaussians

Evaluate classification performance on a test sample of normal and anomalous instances

Quantitative results: usps score distribution

 Scores for digit 0 on train and test set largely agreeScores for digit 1-9 distinct, despite being unseen at train time

Quantitative results: alarm-miss curves

Summary

This talk

Anomaly detection = binary classification

- distinguish samples against an implicit background

Take-home \#2

Probabilistic anomaly detection = class-probability estimation

- can use familiar tools: logistic regression, boosting, ...

Surprise

Specific kind of OC-SVM turns out to be a special case!

- gives a different perspective on underlying components

Deconstructing one-class SVMs

Pick an RKHS \mathcal{H} and desired anomaly fraction $v \in(0,1)$
For data distribution P, the OC-SVM solves

Deconstructing one-class SVMs

Pick an RKHS \mathcal{H} and desired anomaly fraction $v \in(0,1)$
For data distribution P, the OC-SVM solves

Deconstructing one-class SVMs

Pick an RKHS \mathcal{H} and desired anomaly fraction $v \in(0,1)$
For data distribution P, the OC-SVM solves

Questions nonetheless remain:

- implicit μ, γ for Gaussian kernel?
- avoiding need for density for minimum volume sets?
- link interpretation of robust versions of loss?

Thanks!

SO LONG aND...

Thanes for all the fish!

[^0]: ${ }^{1}$ We assume $P(p(X)=\alpha)=0$

[^1]: ${ }^{1}$ We assume $P(p(X)=\alpha)=0$

