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Abstract Given a sample of instances with binary labels, the bipartite top ranking problem
is to produce a ranked list of instances whose head is dominated by positives. One popular
existing approach to this problem is based on constructing surrogates to a performance
measure known as the fraction of positives of the top (PTop). In this paper, we theoretically
show that the measure and its surrogates have an undesirable property: for certain noisy
distributions, it is optimal to trivially predict the same score for all instances. We propose a
simple rectification which avoids such trivial solutions, while still focussing on the head of
the ranked list and being as easy to optimise.
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1 Bipartite (top) ranking problems

Given a sample of instances endowed with binary labels, bipartite ranking is the problem
of learning a real-valued scoring function for instances with maximal area under the ROC
curve (AUC) (Freund et al, 2003; Agarwal et al, 2005; Agarwal andNiyogi, 2005; Clémençon
et al, 2008; Uematsu and Lee, 2012; Gao and Zhou, 2015). By ranking instances according
to their scores under a model with high AUC, most positives will be ranked higher than
most negatives. This problem has use in many real-world contexts, such as ranking movies
according to whether or not a user likes them, and ranking patients according to how likely
they are to have a disease.

In many practical settings, interest is usually reserved for the head of the ranked list. We
shall refer to this as the bipartite top ranking problem. For example, when presented with
a ranked list of movies, users will typically focus on just the top few results (Järvelin and
Kekäläinen, 2000). Similarly, owing to time and monetary costs, doctors can often interact
with only those few patients deemed to have highest chance of being ill. Scorers with good
AUC will not necessarily have maximal accuracy at the head of the ranked list (Yue et al,
2007; Li et al, 2014b), thus prompting much recent algorithmic effort explicitly targetting
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the top ranking regime (Rudin, 2009; Agarwal, 2011; Boyd et al, 2012; Narasimhan and
Agarwal, 2013; Yun et al, 2014; Li et al, 2014b; Kar et al, 2015; Liu et al, 2015).

One popular measure designed for the top ranking regime is the fraction of positives of
the top (PTop) (Agarwal, 2011; Boyd et al, 2012), which computes the fraction of positive
instances ranked above all negative instances. Intuitively, this penalises scorers which place a
negative instance near the head of the list. This measure has inspired convex surrogates which
are tractable to optimise, and have demonstrated strong empirical performance (Agarwal,
2011; Rakotomamonjy, 2012; Li et al, 2014b).

Despite these impressive successes, theoretical aspects of the PTop have received less
attention. For example, it is natural to ask whether one can establish settings under which
PTop optimisation is guaranteed to produce solutions that are superior to standard AUC
optimisation. One entry point to studying this issue is the following: assuming we have
access to an infinite number of samples, and an arbitrarily powerful scorer, how does the
scorer that optimises the PTop compare to that which optimises the AUC?

In this paper, we theoretically analyse this question, with a surprising conclusion: when
our underlying samples have even a tiny amount of noise, the PTopmeasure and its surrogates
asymptotically have a trivial optimal solution that assigns the same score to every instance
(Proposition 1); thus, optimising a PTop surrogate may be harmful in certain top ranking
settings. Given the importance of the top ranking regime, and the fact that a non-trivial body
of recent work has focussed on the PTop and extensions (Agarwal, 2011; Rakotomamonjy,
2012; Li et al, 2014b), we believe that this result is of interest, and warrants the design of
alternate top ranking measures that avoid this issue.

While our result indicates a flaw with the PTop, it is fortunately simple to resolve: we
propose a simple rectification of the PTop (§4.2) which provably avoids trivial solutions
(Propositions 2, 3), while being as easy to optimise (Proposition 5). Thus, these rectified
PTop surrogates retain the strengths but eliminate the weakness of standard PTop surrogates.
We empirically validate these theoretical findings (§6), demonstrating that both on synthetic
and real-world datasets, even when learning with a finite sample, the optimal PTop solution
can be trivial or highly sub-optimal, unlike the optimal RectTop solution.

In summary, we provide two main contributions C1 and C2:
C1: we show that for certain noisy distributions, the PTop measure and its surrogates have

a trivial optimal solution that assigns the same score to every instance (Proposition 1).
C2: we propose a simple rectification of the PTop (§4.2) which provably avoids trivial

solutions (Propositions 2, 3), while being as easy to optimise (Proposition 5).

2 Background and notation

We begin with some background and notation. See Table 1 for a glossary.
Distributions, losses, and risks. Fix a finite instance spaceX.1Denote by D a distribution

over X × {±1} with support supp(D), and random variables (X,Y) ∼ D. Any D may be
decomposed into (P,Q, π) = (P(X | Y = 1),P(X | Y = −1),P(Y = 1)) or (M, η) =
(P(X),P(Y = 1 | X = x)). We call P,Q the class-conditional distributions, and η the class-
probability function. We will write D = (P,Q, π) or D = (M, η) as appropriate. We call D
separable if the labels are deterministic i.e., (∀x ∈ X) η(x) ∈ {0, 1}.

A loss is any ` : {±1} × R → R+. A margin loss is any `(y, v) = φ(yv) for some non-
increasing φ : R→ R+; we interchangeably write such an ` using its underlying φ. Examples

1 This assumption removes the need for various measure-theoretic details in the proofs and analysis.
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Symbol Meaning

Rbal Balanced classification risk
Rrank Bipartite ranking risk
Rptop PTop risk
Rrtop Rectified PTop risk

Symbol Meaning

D Joint distribution
P,Q Class-conditionals
η Class-probability
φ, ` (Margin) Loss

Table 1 Glossary of commonly used symbols in the paper.

include the 0-1 loss, which for indicator function J·K is `01(y, v)
.
= Jyv < 0K + 1

2 · Jv = 0K,
hinge loss `(y, v) = max(0, 1 − yv), and exponential loss `(y, v) = e−yv .

A scorer is any f : X→ R. Given a distributionD and loss `, a risk is any R(·; D, `) : RX →

R+ which quantifies a scorer’s performance. A Bayes-optimal scorer for a risk is any min-
imiser f ∗ ∈ argmin f ∈RX R( f ; D, `). For example, the 0-1 loss has as Bayes-optimal scorer
any f ∗ with sign( f ∗(x)) = sign(2η(x) − 1), so that instances which are on average labelled
positive are assigned a non-negative score.

To make these ideas concrete, we now define three fundamental learning problems on
binary labels. Each seeks a scorer f : X→ R, but with a different risk being minimised.

Binary classification. Binary classification concerns learning a scorer f : X→ R whose
sign agrees with the label of an instance. Formally, the `-risk of f under D = (P,Q, π) is

Rclass( f ; D, `) .= π · EX∼P [`(+1, f (X))] + (1 − π) · EX∼Q [`(−1, f (X))] . (1)

Then, we seek a scorer with smallmisclassification error Rclass( f ; D, `01). On a finite sample
S ∼ DN with positive instances {x+i }

n+
i=1 and negative instances {x−j }

n−
j=1, as a proxy one can

minimise an empirical surrogate risk for suitable convex ` (Bartlett et al, 2006; Scott, 2012),

Rclass( f ; S, `) =
1
N

n+∑
i=1

`(+1, f (x+i )) +
1
N

n−∑
j=1

`(−1, f (x−j )). (2)

When min(π, 1 − π) � 1/2, it is common to instead use the balanced `-risk,

Rbal( f ; D, `) .= EX∼P [`(+1, f (X))] + EX∼Q [`(−1, f (X))] , (3)

which for `01 is known as the balanced error (Chan and Stolfo, 1998; Brodersen et al, 2010).
Class-probability estimation. Class-probability estimation concerns learning a scorer

f : X → R that is an invertible transformation of η. Formally, we seek a scorer with small
risk Rclass( f ; D, `) for ` whose Bayes-optimal scorer is f ∗ = Ψ ◦ η for some invertible
Ψ : (0, 1) → R. Such ` are called strictly proper composite with link function Ψ (Reid
and Williamson, 2010). Examples include the logistic loss `(y, v) = log(1 + e−yv) with
Ψ(u) = log u

1−u , and exponential loss `(y, v) = e−yv with Ψ(u) = 1/2 · log u
1−u . On a finite

sample, one can minimise the empirical `-risk per Equation 2.
Bipartite ranking: from AUC to PTop. Bipartite ranking concerns learning a scorer

f : X → R that ranks the positives above the negatives (Freund et al, 2003; Agarwal et al,
2005). Intuitively, this involves ordering instances according to the values of the underlying
class-probability η. Formally, for margin loss φ, define

Rrank( f ; D, φ) .= EX∼P,X′∼Q [φ( f (X) − f (X′))] . (4)

Then, we seek a scorer with small pairwise disagreement, Rrank( f ; D, `01), which is also one
minus the area under the ROC curve (AUC) of f . We refer to Rrank(·; D, φ) as the AUC φ-risk.
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In practice, performance at the head of the ranking induced by f is crucial (Clémençon and
Vayatis, 2007), which we call the top ranking regime. Intuitively, in contrast to bipartite
ranking, we seek to only accurately order those instances with large values of η. One popular
measure for this regime is the fraction of positives at the top (PTop) (Agarwal, 2011),

Rptop( f ; S, φ) .= max
1≤ j≤n−

1
n+

n+∑
i=1

φ( f (x+i ) − f (x−j )). (5)

Then, the PTop for the scorer f is one minus Rptop( f ; S, `01), viz. the fraction of positives
that are ranked above the highest negative; this strongly penalises errors at the head of the
ranking induced by f (Li et al, 2014b). We will refer to Rptop( f ; S, φ) as the empirical PTop
φ-risk. Compared to other top ranking measures such as the average precision and discounted
cumulative gain, one appeal of the PTop is that it is simple to optimise (Li et al, 2014b).

3 The risk of trivial PTop optimisers

Our first contribution is to show that for non-separable distributions, the PTop is asymptot-
ically optimised by trivially assigning the same score to all instances. To begin, we provide
the distributional version to the PTop.

3.1 Distributional version of PTop

The definition of the PTop in Equation 5 was only on a finite sample S. Assuming S ∼ DN ,
we may view Equation 5 as the empirical version of the risk (Agarwal, 2011, Equation 5.21)

Rptop( f ; D, φ) .= max
x′∈supp(Q)

EX∼P [φ( f (X) − f (x ′))] , (6)

which we refer to as the PTop φ-risk.
Explicating this risk has two advantages. First, it makes transparent the distinction to the

AUC. For a scorer f and instance x ′, let

rank+( f , x ′; D) .= EX∼P
[
`01(+1, f (X) − f (x ′))

]
= PX∼P ( f (X) < f (x ′)) +

1
2
· PX∼P ( f (X) = f (x ′)) ,

(7)

viz. the fraction of positives scoring lower than x ′, plus a penalty for ties per Agarwal (2011,
Footnote 3). It is desirable to ensure that rank+( f ; x ′,D) is small for negative instances x ′.
Observe now that

Rrank( f ; D, `01) = EX′∼Q
[
rank+( f ,X′; D)

]
Rptop( f ; D, `01) = max

x′∈supp(Q)
rank+( f , x ′; D), (8)

i.e. the AUC seeks most negatives to have low rank, but the PTop seeks every negative to
have low rank; the latter thus more directly targets the top ranking regime.

Second, with Equation 6 in place, we can study the Bayes-optimal scorers for the PTop
with a general φ, which provides some insight into the risk.
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3.2 Bayes-optimal scorers for the PTop risk

The Bayes-optimal scorers for a risk are those scorers one theoretically converges to, given
infinite data and an arbitrarily flexible scorer class. While neither assumption is practically
relevant, these scorers are nonetheless a useful theoretical device, and examining their form
can offer insight as to the (un)suitability of a risk for a particular problem. In particular, if the
Bayes-optimal scorer does not have a sensible form, it is an indication that the finite-sample
and restricted scorer risk minimiser may perform sub-optimally.

For example, in binary classification, a basic restriction imposed on a surrogate loss `
is that it is classification-calibrated (Bartlett et al, 2006), i.e., that the Bayes-optimal scorer
agrees with that of the 0-1 loss. This can be seen as a necessary condition to establishing
statistical consistency of surrogate loss minimisation; if the Bayes-optimal solution of the
loss does not agree with that of the 0-1 loss, then one cannot possibly establish convergence
of a finite sample solution to the optimal one for 0-1 loss.

In bipartite ranking, the set of Bayes-optimal scorers for the AUC comprise all strictly
increasing transformations of the underlying class-probability η (Clémençon et al, 2008).
This indicates why optimising the AUC may be sub-optimal for top ranking problems: there
is no preference for accurately modelling larger values of η.

We now show that the Bayes-optimal scorers for the PTop φ-risk ostensibly fare better.

Proposition 1 Pick any distribution D = (M, η) and non-increasingmargin loss φ : R→ R+
with attainable minimum and φ(0) < φ(0−). Pick f ∗ : X→ R with

(∀x ∈ X) f ∗(x) ∈


argmin

v∈R
φ(v) if η(x) = 1

{0} if η(x) ∈ (0, 1)
(−∞, 0] if η(x) = 0.

(9)

Then, argmin
f ∈RX

Rptop( f ; D, φ) = { f ∗ + C | C ∈ R}.

The assumption that φ(0) < φ(0−) implies that for the 0-1 loss, we must have φ(0) < 1.
This is guaranteed by our definition of the loss, for which φ(0) = 1/2.

Proposition 1 is best illustrated through some examples.

Example 1 For φ = `01, we have optimal scorer

f ∗(x) ∈


(0,∞) if η(x) = 1
{0} if η(x) ∈ (0, 1)
(−∞, 0] if η(x) = 0.

This makes concrete the intuition that the PTop focusses on the head of the ranked list: it
seeks to discriminate only those instances that are deterministically positive from the rest.
One does not expend effort trying to order other instances, in contrast to the AUC.

Example 2 For φ(v) = e−v , with unattainable minimum, a limiting optimal scorer is

f ∗(x) ∈


+∞ if η(x) = 1
{0} if η(x) ∈ (0, 1)
(−∞, 0] if η(x) = 0.

By contrast, when using the exponential loss for the classification risk Rclass( f ; D, φ), as in
AdaBoost, f ∗(x) = 1

2 log η(x)
1−η(x) (Buja et al, 2005, Equation 8).
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3.3 The risk of trivial Bayes-optimal scorers

Our argument for the sensibility of the PTop in Examples 1 and 2 assumed that there exist
deterministically positive instances, i.e., 1 ∈ Im(η). However, Proposition 1 equally applies
when this assumption does not hold, so that Im(η) ⊆ [0, 1). Here, we see a different picture:
Equation 9 implies that one optimal solution is the trivial constant scorer

(∀x ∈ X) f ∗(x) = 0,

which is is in fact the only optimal scorer if further Im(η) ⊆ (0, 1). This trivial optimal scorer
will not distinguish between the actual highly ranked elements at all!

Distributions with Im(η) ⊆ (0, 1) may arise as a result of the common scenario where
labels are subject to noise; the following explicates one such standard learning setup, where
the true-class probability comprises a linear score passed through a nonlinear link.

Corollary 1 Pick any finite X ⊂ Rd and distribution D = (M, η) with η(x) = u(〈w∗, x〉) for
somew∗ ∈ Rd and strictly monotone u : R→ (0, 1). Then, for any non-increasing φ : R→ R+
with φ(0) < φ(0−), 0 ∈ argmin

w
Rptop(w; D, φ) for the all-zeros vector 0 ∈ Rd .

3.4 Discussion of results

Both Proposition 1 and Corollary 1 are to our knowledge novel, and show that minimising
the (surrogate) PTop risk can produce trivial solutions. In hindsight, this property is clear by
the mere definition of the PTop in Equation 6: when P and Q have overlapping support, our
maximum will compare every pair of points, in which case it is optimal to make all scores
the same. This suggests a potential issue with both measuring top ranking performance with
the standard `01 PTop risk, and attaining good top ranking performance by optimising a
surrogate PTop risk.

Nonetheless, a natural concern is that these results are of no practical significance. After
all, they are statements about the distributional minimiser over all possible scorers. Both
these qualifiers deserve comment. First, are the results relevant if we optimise over a restricted
class of scorers (e.g. linear scorers)? In fact, if our scorer class contains constant scorers
(which is trivially true for linear scorers), then the optimal PTop scorer within our class will
match the Bayes-optimal scorer, i.e. f ∗ ≡ 0. Importantly, this holds even if the scorer class
is incapable of modelling the true η. We will see an example of this in §6.1.

Second, are the results relevant if we optimise on on an empirical sample S, as is always
true in practice? Here, the optimal solution may indeed be non-trivial, because the empirical
distribution is often separable (as in a finite sample the various instances are typically
distinct). However, our results imply that for non-separable distributions, as we increase the
number of samples2 we will converge to a trivial scorer. Such “anti-consistency” is clearly
undesirable for any learning method. We will see an example of this in §6.2.

Fundamentally, a modification of PTop that avoids its behaviour for non-separable distri-
butions while preserving its behaviour for separable distributions would be strictly preferable
to work with. We now provide one such simple modification to the risk.

2 Our result assumes iid draws of instances and labels. If however one fixes the set of instances and only
draws labels randomly, the optimal scorers may depart from the trivial form implied by Proposition 1.
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Risk Expression

PTop E
P
e− f (X) + E

Q

{
+∞ if f (X) > 0
0 else

PTopApp E
P
e− f (X) + E

Q

{
1
p e

p · f (X) if f (X) > 0
1
p e

p · f (X) else

Risk Expression

RectTop E
P
e− f (X) + E

Q

{
+∞ if f (X) > 0
e f (X) else

RectTopApp E
P
e− f (X) + E

Q

{
1
p (e

p· f (X) − 1) if f (X) > 0
e f (X) else

Table 2 Comparison of (approximate) PTop risk and proposed rectification (RectTop) for exponential loss.

4 RectTop: a rectification of the PTop

Our second contribution is a simple rectification of PTop that dispels trivial Bayes-optimal
scorers. Our proposal relies on relating the PTop and a balanced classification risk (Equation
3). This is used to further design a family of differentiable approximations to the risk, akin
to how the p-norm push (Rudin, 2009) approximates the PTop. For concreteness, Table 2
contrasts the existing and proposed risks for the case of exponential loss.

4.1 Relating PTop and balanced classification risk

There are several ways one might reasonably seek to modify the PTop risk so as to avoid
trivial solutions. Our approach is to avail of the rich set of tools available to study loss
functions for learning with binary labels. To do so, we observe that we may re-interpret the
optimisation of the PTop risk as a special kind of balanced loss minimisation.

Lemma 1 For any distribution D, non-increasing margin loss φ : R → R+, and F ⊂ RX

that is closed under translation,

min
f ∈F

Rptop( f ; D, φ) = min
f ∈F

Rbal( f ; D, `) (10)

where `(+1, v) = φ(v) `(−1, v) =

{
+∞ if v > 0
0 if v ≤ 0.

(11)

The peculiar form of Equation 11 is a result of the second minimisation being implicitly
constrained. As an illustrative example, the optimisation of the PTop (Equation 5) with a
linear scorer f : x 7→ 〈w, x〉 + b can be re-written as the constrained optimisation

min
w,b

1
n+

n+∑
i=1

φ(〈w, x+i 〉 + b) : (∀ j)〈w, x−j 〉 + b ≤ 0, (12)

with the bias term bplaying the role of the (negated)maximumnegative score. Interpreting the
constraint as a loss per Equation 11 explicates why the PTop has trivial solutions (Proposition
1): beyond the non-positive constraint, there is no penalty on negative instances. In particular,
there is no penalty for assigning all negative instances the same score.
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4.2 RectTop: the rectified PTop risk

Having traced the trivial Bayes-optimal solutions to the nature of the loss `(−1, ·) on negatives
(Equation 11), our strategy to rectify the risk is immediate: we will suitably modify `(−1, ·)
so that we discourage assigning the same score to all such instances. At the same time, we
wish to encourage preferentially focussing on the “best” instances.

The former goal can be achieved by choosing `(−1, v) = φ(−v). This would make ` a
standard margin loss, which has non-trivial Bayes-optimal scorers. To further achieve the
latter goal, we additionally impose the non-positive score constraint of Equation 11, yielding:

`(+1, v) = φ(v) `(−1, v) =

{
+∞ if v > 0
φ(−v) if v ≤ 0.

(13)

Employing such a loss yields the RectTop (rectified PTop) φ-risk,

Rrtop( f ; D, φ) .= Rbal( f ; D, `)

= E
X∼P

φ( f (X)) + E
X∼Q

{
+∞ if f (X) > 0
φ(− f (X)) else.

(14)

This can be seen as an amalgam of the balanced and PTop risks (Equations 3, 11). We
illustrate the role of the additional φ(−v) loss for negatives in the case of 0-1 loss.

Example 3 For φ = `01, if our scorer hasmaxx′∈supp(Q) f (x ′) > 0, the risk is trivially infinite.
If instead maxx′∈supp(Q) f (x ′) ≤ 0,

Rrtop( f ; D, φ) = PX∼P ( f (X) < 0) +
1
2
·
(
PX∼P ( f (X) = 0) + PX∼Q ( f (X) = 0)

)
.

Observe now that making maxx′∈supp(Q) f (x ′) < 0 would be sub-optimal for a non-separable
distribution, since we would incur a penalty of +1 from the first term, as opposed to + 1

2 from
the last term. Assuming then that maxx′∈supp(Q) f (x ′) = 0,

Rrtop( f ; D, φ) = Rptop( f ; D, φ) +
1
2
· PX′∼Q ( f (X′) = 0) . (15)

Thus, compared to the PTop, we penalise any negative scores equal to that of the highest
ranked negative. This important difference prevents trivial solutions, as we now see.

4.3 Bayes-optimal scorers for the RectTop

We now show that the Bayes-optimal RectTop scorers are non-trivial even for non-separable
distributions. We begin with a counterpart to Proposition 1 for 0-1 loss.

Proposition 2 Pick any distribution D = (M, η), and let

(∀x ∈ X) f ∗(x) ∈


(0,∞) if η(x) = 1
{0} if η(x) ∈ (π, 1)
(−∞, 0] if η(x) = π
(−∞, 0) if η(x) ∈ [0, π).

Then, f ∗ ∈ argmin
f ∈RX

Rrtop( f ; D, `01).
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Proposition 2 implies that under the RectTop risk, instances with η greater than average
are assigned the score zero, with other instances assigned a lower score. This yields non-
trivial solutions, while ensuring the highest negative is placed below the positives. For
non-separable D, when η takes on two or more distinct values we must have at least one x
with η(x) ∈ [π, 1), and one with η(x) ∈ (0, π): this is because π = EX∼M [η(X)], and so η(x)
must be greater than its average at least once.

Next, we consider the case of surrogate φ.When this surrogate is strictly proper composite
(capturing many commonly used losses such as logistic and exponential), as per §2, the
optimal scorers have an intuitive form.

Proposition 3 Pick any distribution D = (M, η). Let φ be a convex, strictly proper composite
loss with link Ψ. Let

(∀x ∈ X) f ∗(x) =


+∞ if η(x) = 1
{0} if η(x) ∈ [π, 1)
Ψ̄π(η(x)) if η(x) ∈ [0, π),

where Φπ
.
= Ψ ◦ gπ for gπ(u)

.
=

(1−π)·u
π+(1−2·π)·u . Then, argmin

f
Rrtop( f ; D, φ) = { f ∗}.

When π = 1/2, Φπ ≡ Ψ, viz. the original link itself. For general π, the link appears more
complicated, but in fact guarantees that we escape the issue observed in Proposition 1: an easy
calculation reveals that Φπ(π) = 0, so that instances with η greater than average are assigned
a score of 0, while the rest are assigned a strictly lower score. Thus, for non-separable D,
optimising Rrtop for a strictly proper composite φ avoids the trivial solutions plaguing Rptop.

Example 4 For φ(v) = e−v , one can verify that Φπ(u) = Ψ(u) − 1
2 log π

1−π . Thus,

f ∗(x) =


+∞ if η(x) = 1
{0} if η(x) ∈ [π, 1)
1
2 log η(x)

1−η(x) −
1
2 log π

1−π if η(x) ∈ [0, π).

Instances with η(x) ∈ [0, π) are thus scored strictly less than instances with η(x) ∈ [π, 1),
which are all clamped at 0. This is in contrast to the optimal solution for the PTop (Example
2). Note that a trivial modification to the loss ensures the opposite behaviour, i.e. the score
for η(x) ∈ [0, π) clamped to zero, and other instances accurately modelled; see Appendix C.

4.4 A differentiable approximation of the RectTop

Both the PTop and RectTop risks target good performance at the head of the ranked list. For
the PTop, Rudin (2009) proposed a parametric family of approximations to the risk, known
as the p-norm push. These provide a user-controlled parameter p, which as p→ +∞ reduces
to the PTop, and as p→ 1 reduces to the AUC. For the case of the exponential loss, Ertekin
and Rudin (2011) further showed that the minimiser of the p-norm push is equivalent to that
of a standard classification risk with the p-classification loss,

`(+1, v) = e−v `(−1, v) = p−1 · evp . (16)
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We now show construct a similar family of approximations for the RectTop. Suppose φ
is some differentiable strictly proper composite margin loss. Following §4.2, define

`(+1, v) = φ(v) `(−1, v; p) =

{
(φ(−vp) − φ(0))/p + φ(0) if v > 0
φ(−v) if v ≤ 0

(17)

for some p > 0. Clearly, this loss approaches Equation 13 pointwise as p → ∞. Further,
the loss is differentiable as well as strictly proper composite. Thus, for finite p, we will
approximate the Bayes-optimal scorers of Equation 21, and can minimise Rbal( f ; S, `) using
gradient-based optimisation while remaining faithful to the original RectTop objective.

Example 5 For φ(v) = e−v , we have

`(+1, v) = e−v `(−1, v; p) =

{
(1/p) · (evp − 1) + 1 if v > 0
ev if v ≤ 0.

In fact, the partial loss (1/p) · evp is exactly as per the p-classification loss (Equation 16),
which as noted was shown to have equivalent minimiser to the p-norm push risk of Rudin
(2009). Equation 17 is thus a translation of this family to the RectTop risk.

4.5 Generalisation bound

We conclude our analysis with a generalisation bound for the balanced risk R( f ; D, `) .
=

Rbal( f −maxx′ f (x ′); D, `); when the max(·) term is 0, this is exactly the rectified PTop risk.
The following builds on Agarwal (2011, Theorem 5.1), which was for the PTop.

Proposition 4 Pick any distribution D, and F ⊂ RX. Let S ∼ DN with n+ (n−) positives
(negatives). Then, for any ε, γ > 0, uniformly over all scorers f ∈ F, for R(·) as above,

R( f ; D, `01) ≤ R∞( f ; S, `γ) + ε

with probability at least 1 − δ over the draw of S, where

δ = N(F, εγ/8) ·
(
(ρ( f , γ, ε/6))n− + 2n− · e−ε

2n+/18 + 2nq · e−ε
2n−/18

)
for N(F, ·) the `∞ covering number of F, nq = |supp(Q)|, and

R∞( f ; S, `γ)
.
= max

1≤ j≤n−
E(X,Y)∼S

[
`γ(Y( f (X) − f (x−j )))

]
where `γ(v) = Jv < γK + 1

2 Jv = γK.

Compared to Agarwal (2011, Theorem 5.1), we need some additional analysis to account
for the tie-breaking term in RectTop compared to the classic PTop. As a result, our final bound
includes an extra term which decays exponentially in the number of negative samples, but
has a linear dependence on the support size of the negative class. Intuitively, this term arises
from the additional penalty which ensures each negative instance has a score which is ≤ 0;
in particular, it measures the estimation error that arises from using a sample of negative
instances, versus the underlying population.

The bound implies that good samplemargin performance guarantees good generalisation
performance. However, as a caveat, recall that we assumed of X; without this the bound may
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be trivial, as we could have nq = |supp(Q)| = +∞. This limits the practical viability of the
bound, since one typically expects X to be non-finite. We conjecture it is possible to extend
such a bound to the case of non-finite X, perhaps employing a suitable cover of |supp(Q)|, at
the expense of a penalty on the dependence on ε . Exploring such a generalisation would be
of interest in future work, for which Proposition 4 may be a useful starting point. Alternate
techniques for establish generalisation bounds, such as those based on similarity of train and
test samples (Xu and Mannor, 2012), may also be fruitful.

We also remark here that the bound does not address the issue of the comparative
difficulty of optimising the RectTop over the differentiable approximation in §4.4. This issue
is however not fully resolved even for the original PTop risk. The original analysis of Rudin
(2009) provided a generalisation bound on the p-norm push risk with sample complexity
exponential in p. This indicates that increasing p makes generalisation harder, which is
plausible: by increasingly focussing on the head of the ranked list, one works with fewer
effective samples and makes the algorithm more sensitive to its inputs. Interestingly, the
bound in Rudin (2009) is vacuous for the limiting case p = +∞ (i.e., the PTop risk), and so
does not provide a guarantee for PTop minimisation being able to generalise. Subsequently,
Agarwal (2011) provided a non-trivial bound for this risk, which implies there is some
looseness in the bound of Rudin (2009). It is still plausible that optimising the p-norm push
risk for finite p is easier; however, this issue was not considered in Agarwal (2011).

As a final remark, we note that Li et al (2014b) provided a different generalisation bound
for PTop minimisation, which looked at the probability of a positive instance being ranked
below most negative instances. It was shown that provided the empirical surrogate PTop risk
is sufficiently small, this probability can be non-trivially bounded. Deriving an analogous
bound for our risk would be of interest, though again would not directly address the relative
difficulty of RectTop versus approximate RectTop minimisation.

4.6 Discussion of results

Our results show that our rectification of the PTop avoids trivial asymptotic solutions. While
this rectification has a simple final form, the connection between the PTop and balanced
risks (Lemma 1) is the crucial insight from which our modifications derived naturally. A few
comments on the RectTop risk are prudent.

First, the focus of the RectTop is not to measure top ranking performance, but rather to
attain good top ranking performance. When the concern is to measure performance, there
may be little difference in using the PTop and RectTop. This is because for the 0-1 loss,
Equation 15 implies that the empirical RectTop risk may be identical (upto translation) to the
empirical PTop risk, since the maximum negative score may be uniquely attained. However,
when the concern is to attain good performance, there is a non-trivial difference in the two
risks. This is because for a general surrogate φ, the two risks will be fundamentally different,
even on a finite sample. Further, our Proposition 3 implies that for proper composite φ, the
RectTop will result in a non-trivial asymptotic solution, unlike the PTop.

Second, the RectTop risk has an implicit score anchor (i.e. 0) that distinguishes positives
and negatives, and thus forgoes translation invariance. Strictly, then, it is not a ranking risk;
however, its theoretical minimisers are nonetheless sensible in the top ranking regime.

Third, the correction applied by RectTop can be viewed as a form of tie-breaking: it
ensures that the negative instances are not all trivially assigned the same score. As noted in
Equation 7, the original PTop already includes one form of tie-breaking: this however ensures
that the positive instances are not all trivially assigned the same score. Without the latter
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correction, it would be optimal to trivially assign all instances the same score, regardless of
whether 1 ∈ Im(η) or not. The correction rules out such solutions when 1 ∈ Im(η); however,
we need our additional correction to rule out trivial solutions when 1 < Im(η).

Fourth, one would hope that low RectTop φ-risk also ensures good performance with
respect to other top ranking measures, such as discounted cumulative gain and average
precision. The form of optimal scorers in Proposition 3 suggest this is plausible. While we
have not confirmed this intuition theoretically, we do confirm this empirically in §6.3.

Fifth, the surrogate RectTop φ-risk is only a means to an end: in practice, one’s goal
is to ensure that the RectTop 0-1 risk is small, so that most positives are ranked above all
negatives. For computational reasons, it is preferable to work with a (convex) surrogate risk.
Our analysis justifies such a risk in an asymptotic regime, where one has sufficiently many
samples and a rich function class. However, when one or both of these assumptions fail,
surrogate minimisation may fail to produce desirable results; for example, a counterexample
inRudin andWang (2018) demonstrates that exponential lossminimisationmaynotmaximise
the AUC. The brittleness of convex surrogates is not unique to ranking, and plagues their
use in standard binary classification as well (Long and Servedio, 2010; Ben-David et al,
2012). As with classification problems, one might ameliorate the problem by using a non-
convex surrogate. Exploring such losses for the RectTop would be of interest, and would be
accommodated by our Proposition 3which simply requires φ to be strictly proper composite.3

Sixth, our Bayes-optimal analysis does not provide a means of discriminating amongst
different surrogates. Such analysis simply verifies that the asymptotic target of surrogate
minimisation is sensible, and leaves untold how different surrogate minimisers behave un-
der finite samples and restricted function classes. In practice, one often finds that different
surrogates can yield quite different performance. This raises the non-trivial issue of choos-
ing which surrogate φ should be employed, which is again largely unresolved in binary
classification (Reid and Williamson, 2010, Appendix A). Nonetheless, one does have some
(competing) guidance on this issue by means of minimax analysis (Ben-David et al, 2012),
appeals to noise robustness (Ghosh et al, 2015), and empirical surrogate tuning (Nock and
Nielsen, 2009). We believe that similar ideas might be useful in the top ranking setting.

Seventh, the RectTop is only one possible rectification of the PTop. As noted, our
modification allows one to use the connection between the PTop and standard balanced
classification risks. Exploring other rectifications is of interest for future work.

5 Optimising the RectTop risk

Recall that one appeal of using the PTop φ-risk for top ranking problems is that it admits a
simple convex optimisation. We now show the same is true for the RectTop φ-risk. Given
S = {x+i }

n+
i=1 ∪ {x

−
j }

n−
j=1 ∼ DN , consider optimising Rrtop( f ; S, φ) with a linear fw,b : x 7→

〈w, x〉 + b. By Equations 13, 14, this is (c.f. Equation 12)

min
w,b

1
n+

n+∑
i=1

φ(〈w, x+i 〉 + b) +
1

n−

n−∑
j=1

φ(−(〈w, x−j 〉 + b)) : (∀ j)〈w, x−j 〉 + b ≤ 0. (18)

Note that the constraint is trivially feasible since for any w, we may pick b = −maxj 〈w, x−j 〉.
While convex, Equation 18 does not permit standard gradient-based optimisation due to the
constraint. Fortunately, like the PTop, the dual objective is amenable to efficient optimisation.

3 Strictly proper composite losses are allowed to be non-convex; see, e.g., Buja et al (2005); Reid and
Williamson (2010).
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Proposition 5 For any convex differentiable φwith conjugate φ∗ and sampleS = {(x+i ,+1)}n+
i=1∪

{(x−j ,−1)}n−
j=1, the dual objective of Equation 18 with regulariser (λ/2)‖w‖

2
2 is

min
(α,β,γ)∈Θ

1
2λ

����X+α − X−(β + γ)
����2 + 1

n+

n+∑
i=1

φ∗ (−n+ · αi) +
1

n−

n−∑
j=1

φ∗
(
−n− · βj

)
(19)

for positive and negative feature matrices X+,X−, and

Θ =

{
(α, β, γ) :

n+∑
i=1

αi =

n−∑
j=1
(βj + γm), α ∈ −dom(φ∗), β ∈ −dom(φ∗), γ ≥ 0

}
.

Constraining β ≡ 0, would yield exactly the Rptop dual of Li et al (2014b, Theorem 1).
The similarity between the two problems means that for smooth φ∗, we can adopt the same
optimisation scheme as in Li et al (2014b), using Nesterov’s method (Nesterov, 2004) with
a minor augmentation to additionally optimise for the variables β present in our objective;
see Appendix B for details.

Three comments are prudent. First, as per the objective of Li et al (2014b), optimisation
of Equation 19 requires complexity linear in the number of training samples. Second, one can
equally work with kernelised scorers, as Equation 19 only involves inner products between
instances. Third, for the differentiable risk approximations in §4.4, one can employ standard
unconstrained gradient-based optimisation; trivially, this also has linear time complexity.

6 Experimental illustration of results

We now validate our theoretical analyses empirically: we show in §6.1, 6.2 that the PTop
minimiser will be trivial for certain non-separable distributions (per C1), while the RectTop
minimiser avoids such solutions (perC2).We further show in §6.3 that on real-world datasets,
the RectTop minimiser is competitive or superior to its PTop counterpart. In sum, RectTop
yields comparable or superior results to PTop in the average case, while ensuring there are
no trivial solutions in the worst case.

6.1 Illustration of trivial population PTop minimisers

We first validate that the PTop φ-risk minimiser will be trivial for certain non-separable
distributions. We fix a finite X comprising Natom points in R2, and use a distribution D over
X × {±1} with a uniform marginal M and class-probability η(x) = 1/(1 + e−〈w

∗,x 〉) for
some w∗ ∈ R2. As X is finite, we can explicitly compute the PTop risk as Rptop(w; D, φ) ∝∑

x∈X η(x) · φ (〈w, x〉 −maxx′∈X〈w, x ′〉) . Since Im(η) ⊆ (0, 1), by Corollary 1 we expect the
PTop risk minimiser to be the all-zeros vector.

We fix the optimal w∗ = W/
√

2 · (1, 1), where W ∈ {4−3, . . . , 43}. We fix Natom = 4, and
draw the elements of X uniformly from [−1, 1]2. For each choice of (X,w∗), we minimise
the population risks Rptop(w; D, φ) and Rrtop(w; D, φ) for φ the square-hinge loss4 using
MATLAB’s fmincon function. We compute the two minimisers’ norm and AUC for 100
random draws of X. (The use of AUC is sufficient to illustrate that the PTop solution is
tantamount to random guessing.)

4 Strictly, this makes a linear model misspecified, since the true η involves a sigmoid link. We nonetheless
find that the TopPush solution is trivial, as argued in §3.4.
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Fig. 1 Comparison of Rptop (TopPush) versus Rrtop (RectPush) minimisers on population (§6.1) and finite
sample (§6.2), synthetic data. As predicted by the theory, the TopPush converges to a trivial solution, unlike
the RectPush.

Figures 1(a), 1(b) show that for smaller W the Rrtop separator is reasonable, while the
Rptop minimiser is the trivial solution (evidenced by having zero norm). For larger W , the
performance of the two is comparable, with the RectTop solution being slightly better. Note
that for larger W , η will be close, but not exactly equal to {0, 1}; conversely, for smaller W ,
η will be close to 1/2. Finally, Figure 1(c) studies the excess risk (or suboptimality gap) of
the trivial zero solution, i.e. computes the excess risk of this solution over that of the risk
minimiser. As expected, the zero solution is in fact optimal for the TopPush for all but the
largest choice of W , while for the RectPush, this solution quickly has non-trivial excess risk.

6.2 Illustration of trivial sample PTop minimisers

We next confirm that for the above example, the PTop minimiser on a finite sample also
performs poorly. For the same discrete D as above, and W = 1, we draw a sample S ∼ DN ,
and compute the empirical minimisers for the PTop and the RectTop. We report the mean
AUC on D of these solutions over 100 random draws of X as N is varied.

Figure 1(d) confirms that while for small N the TopPush solution performs reasonably –
a consequence of the empirical distribution often being separable – as N increases there is a
steady decrease in performance. When N is suitably large, the TopPush solution approaches
the trivial population minimiser from the previous section, as evidenced by the AUC con-
verging to 0.5. By contrast, as N increases the RectPush solution improves its performance,
as is desirable for any learning algorithm. Figure 1(e) further confirms that the trivial solution
is increasingly close to optimal for the empirical TopPush risk, but increasing sub-optimal
for the empirical RectPush risk.



The risk of trivial solutions in bipartite top ranking 15

6.3 Illustration of real-world RectTop performance

We conclude with results on real-world datasets used in Li et al (2014b), plus some additional
ones from the UCI repository. We summarise the statistics of the datasets in Table 3. For
the high dimensional real-sim and news20-forsale datasets, we performed an SVD
projection to 100 dimensions and used this as input to all methods.

We compare logistic regression (Logistic), the PTop risk (TopPush) Li et al (2014b),
our rectified PTop risk of §4.2 (RectPush), and its differentiable approximation of §4.4
(RectPushApp). In Li et al (2014b), TopPush was shown superior to a number of other
top-ranking approaches such as those of Boyd et al (2012); Agarwal (2011); Narasimhan
and Agarwal (2013), as well as standard ranking approaches such as SVMRank (Joachims,
2005). For all methods, we used a regularised linear scorer f ; for all methods other than
logistic, we set φ to be the square-hinge loss.

Each dataset was randomly split 10 times in the ratio 2:1, with all instances normalised
so that ‖x‖2 ≤ 1. We measure average test performance across these splits using the average
reciprocal rank (ARR), discounted cumulative gain (DCG)5, average precision (AP), positives
at the top6 (PTop), and precision at 10 (Prec@10). For each split, 5-fold CV was used to tune
the regularisation strength λ ∈ {2−20, 2−19, . . . , 215} based on AP.

Dataset n d

german 1000 24
abalone 4177 9
spambase 4601 57
magic 19020 10
news20-forsale 19928 62061
skin 245057 3
activity 14704 561

Dataset n d

covtype-binary 38501 54
w8a 64700 300
real-sim 72309 20958
ijcnn1 141691 22
nsl-kdd 148517 119
kddcup98 191779 15
kddcup04 50000 70

Table 3 Statistics of # of samples (n) and dimensions (d) for datasets used in experiments.

6.3.1 Performance comparison

Table 4 shows that both RectPush and its differentiable approximation RectPushApp offer
consistent (if sometimes modest) improvements over TopPush and logistic regression. We
reiterate that the value of the RectPush is that it guards against trivial solutions, as shown
in §6.1, 6.2. Put another way, RectPush yields comparable or superior results to TopPush
in the average case, while ensuring that there are no trivial solutions in the worst case.
From a practical perspective, one could make a case for using logistic regression for top
ranking problems, given its ubiquity and its respectable showing in the results. Translating
the theoretical gains from RectTop into more visible practical gains would nonetheless be of
interest for future work.

5 We scaled this by the number of positives to produce scores in [0, 1].
6 While our analysis suggests this measure favours trivial solutions for non-separable distributions, we

present the scores here as they have been reported in previous work. Recall also that from §4.6, the empirical
RectTop for 0-1 loss is often identical to the empirical PTop for 0-1 loss.
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Fig. 2 Training times (in seconds) of RectPush versus TopPush as training set size increases.

A Friedman test confirms that on all but Prec@10 and ARR, the difference in ranks
is statistically significant at the 5% level. A post-hoc Holm test confirms the following
significant differences for the best performing methods on individual measures:

– AUC: RectPushApp is significantly better than TopPush and RectPush
– DCG: RectPushApp is significantly better than Logistic
– AP: RectPushApp is significantly better than Logistic

Of note is that a Nemenyi test fails to reveal the differences for TopPush over other methods,
when they exist, to be significant.

As a final remark, we note that the RectTop generally produces better scores with respect
to the PTop. While we have argued for the latter being a misleading measure of performance,
we re-iterate that per Section 4.6, the issue of ties is less prominent for the empirical PTop
with 0-1 loss; thus, it is unsurprising that as a performance measure, this does not overly
penalise the method which is best performing on the other metrics.

6.3.2 Timing comparison

Table 5 presents a comparison of the training times for theTopPush,RectPush, andRectPushApp
on all datasets. (Times are as computed on 2.2GHz Intel Core i7.) We find that the TopPush is
generally slightly faster, but RectPush training is never prohibitive.While theO(·) complexity
of RectPush is identical to the TopPush, the training times for the two are unsurprisingly
different, which is owing to the objectives employing different optimal regularisation, and
thus requiring different numbers of iterations to converge.

To further study the scalability of RectPush, we look at how the training time grows as
the number of training instances increases. For the larger skin and kddcup98 datasets, we
subsample the number of training instances at various levels, and compare the training times
of the RectPush and TopPush methods. Figure 2 shows that for both methods, the scalability
is empirically linear in the number of instances. The slopes of the methods however vary in
a problem-specific manner.

7 Conclusion and future work

We showed that the fraction of positives of the top (PTop), a popular measure for bipartite
top ranking, may be trivially optimised by predicting the same score for all instances. This
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Dataset Loss AUC ARR DCG AP PTop Prec@10

Logistic 0.8051 ± 0.0080 (1) 0.0369 ± 0.0016 (4) 0.1846 ± 0.0015 (4) 0.6087 ± 0.0192 (2) 0.0224 ± 0.0083 (4) 0.7000 ± 0.0333 (3)
german TopPush 0.8007 ± 0.0088 (3) 0.0378 ± 0.0014 (3) 0.1850 ± 0.0013 (3) 0.6056 ± 0.0198 (4) 0.0261 ± 0.0089 (3) 0.7200 ± 0.0291 (2)

RectPush 0.7953 ± 0.0083 (4) 0.0392 ± 0.0015 (2) 0.1860 ± 0.0013 (2) 0.6057 ± 0.0164 (3) 0.0367 ± 0.0101 (1) 0.7300 ± 0.0367 (1)
RectPushApp 0.8048 ± 0.0080 (2) 0.0393 ± 0.0012 (1) 0.1864 ± 0.0013 (1) 0.6136 ± 0.0191 (1) 0.0334 ± 0.0107 (2) 0.6900 ± 0.0407 (4)

Logistic 0.8161 ± 0.0166 (1) 0.0106 ± 0.0010 (3) 0.1407 ± 0.0025 (3) 0.0317 ± 0.0022 (3) 0.0000 ± 0.0000 (1) 0.0000 ± 0.0000 (1)
abalone TopPush 0.7332 ± 0.0295 (4) 0.0119 ± 0.0008 (1) 0.1428 ± 0.0019 (2) 0.0355 ± 0.0029 (1) 0.0000 ± 0.0000 (1) 0.0000 ± 0.0000 (1)

RectPush 0.7337 ± 0.0251 (3) 0.0091 ± 0.0011 (4) 0.1362 ± 0.0028 (4) 0.0289 ± 0.0031 (4) 0.0000 ± 0.0000 (1) 0.0000 ± 0.0000 (1)
RectPushApp 0.8006 ± 0.0235 (2) 0.0112 ± 0.0008 (2) 0.1431 ± 0.0019 (1) 0.0348 ± 0.0024 (2) 0.0000 ± 0.0000 (1) 0.0000 ± 0.0000 (1)

Logistic 0.9658 ± 0.0011 (3) 0.0104 ± 0.0004 (4) 0.1336 ± 0.0004 (3) 0.9337 ± 0.0035 (3) 0.0202 ± 0.0084 (4) 0.9200 ± 0.0249 (3)
spambase TopPush 0.9476 ± 0.0017 (4) 0.0108 ± 0.0003 (3) 0.1336 ± 0.0003 (3) 0.9197 ± 0.0034 (4) 0.0566 ± 0.0163 (2) 0.9500 ± 0.0269 (1)

RectPush 0.9671 ± 0.0012 (2) 0.0113 ± 0.0001 (1) 0.1345 ± 0.0002 (1) 0.9442 ± 0.0035 (1) 0.0677 ± 0.0249 (1) 0.9500 ± 0.0167 (1)
RectPushApp 0.9676 ± 0.0011 (1) 0.0110 ± 0.0002 (2) 0.1343 ± 0.0003 (2) 0.9433 ± 0.0036 (2) 0.0443 ± 0.0137 (3) 0.9400 ± 0.0267 (2)

Logistic 0.8418 ± 0.0011 (3) 0.0020 ± 0.0000 (2) 0.0961 ± 0.0000 (2) 0.8867 ± 0.0018 (4) 0.0018 ± 0.0005 (4) 0.9200 ± 0.0133 (3)
magic TopPush 0.8357 ± 0.0011 (4) 0.0021 ± 0.0000 (1) 0.0963 ± 0.0000 (1) 0.9003 ± 0.0015 (1) 0.0085 ± 0.0040 (2) 0.9500 ± 0.0167 (2)

RectPush 0.8421 ± 0.0014 (2) 0.0021 ± 0.0000 (1) 0.0963 ± 0.0000 (1) 0.8993 ± 0.0016 (2) 0.0090 ± 0.0042 (1) 0.9900 ± 0.0100 (1)
RectPushApp 0.8427 ± 0.0011 (1) 0.0020 ± 0.0000 (2) 0.0961 ± 0.0000 (2) 0.8895 ± 0.0018 (3) 0.0023 ± 0.0008 (3) 0.9200 ± 0.0249 (3)

Logistic 0.8016 ± 0.0033 (4) 0.0035 ± 0.0003 (4) 0.1068 ± 0.0004 (4) 0.1487 ± 0.0041 (4) 0.0003 ± 0.0003 (4) 0.1200 ± 0.0249 (4)
news20-forsale TopPush 0.8333 ± 0.0057 (2) 0.0130 ± 0.0006 (1) 0.1256 ± 0.0013 (1) 0.3249 ± 0.0137 (1) 0.0148 ± 0.0028 (1) 0.7700 ± 0.0367 (2)

RectPush 0.8275 ± 0.0041 (3) 0.0128 ± 0.0008 (2) 0.1240 ± 0.0013 (3) 0.2999 ± 0.0120 (3) 0.0147 ± 0.0032 (2) 0.7900 ± 0.0458 (1)
RectPushApp 0.8589 ± 0.0055 (1) 0.0119 ± 0.0005 (3) 0.1249 ± 0.0011 (2) 0.3196 ± 0.0129 (2) 0.0079 ± 0.0020 (3) 0.6300 ± 0.0473 (3)

Logistic 0.9475 ± 0.0003 (2) 0.0002 ± 0.0000 (1) 0.0696 ± 0.0000 (1) 0.9886 ± 0.0001 (2) 0.9146 ± 0.0003 (3) 1.0000 ± 0.0000 (1)
skin TopPush 0.9470 ± 0.0003 (3) 0.0002 ± 0.0000 (1) 0.0696 ± 0.0000 (1) 0.9886 ± 0.0001 (2) 0.9171 ± 0.0003 (1) 1.0000 ± 0.0000 (1)

RectPush 0.9466 ± 0.0003 (4) 0.0002 ± 0.0000 (1) 0.0696 ± 0.0000 (1) 0.9885 ± 0.0001 (3) 0.9165 ± 0.0003 (2) 1.0000 ± 0.0000 (1)
RectPushApp 0.9479 ± 0.0003 (1) 0.0002 ± 0.0000 (1) 0.0696 ± 0.0000 (1) 0.9887 ± 0.0001 (1) 0.9111 ± 0.0004 (4) 1.0000 ± 0.0000 (1)

Logistic 0.8978 ± 0.0012 (3) 0.0041 ± 0.0000 (2) 0.1085 ± 0.0000 (2) 0.8975 ± 0.0017 (2) 0.0043 ± 0.0010 (4) 0.9200 ± 0.0291 (2)
activity TopPush 0.8442 ± 0.0082 (4) 0.0038 ± 0.0002 (3) 0.1075 ± 0.0002 (3) 0.8504 ± 0.0057 (3) 0.0169 ± 0.0047 (1) 0.8700 ± 0.0803 (3)

RectPush 0.8997 ± 0.0011 (2) 0.0042 ± 0.0000 (1) 0.1087 ± 0.0000 (1) 0.9020 ± 0.0013 (1) 0.0146 ± 0.0028 (3) 0.9800 ± 0.0133 (1)
RectPushApp 0.9005 ± 0.0010 (1) 0.0042 ± 0.0000 (1) 0.1087 ± 0.0000 (1) 0.9020 ± 0.0013 (1) 0.0153 ± 0.0042 (2) 0.9800 ± 0.0133 (1)

Logistic 0.9374 ± 0.0010 (2) 0.0054 ± 0.0003 (3) 0.1132 ± 0.0003 (4) 0.5492 ± 0.0051 (4) 0.0056 ± 0.0054 (4) 0.6900 ± 0.0482 (3)
covtype-binary TopPush 0.9323 ± 0.0019 (3) 0.0074 ± 0.0000 (1) 0.1169 ± 0.0002 (3) 0.6446 ± 0.0054 (2) 0.0452 ± 0.0057 (3) 0.9900 ± 0.0100 (2)

RectPush 0.9374 ± 0.0018 (2) 0.0074 ± 0.0001 (1) 0.1172 ± 0.0002 (1) 0.6514 ± 0.0044 (1) 0.0490 ± 0.0028 (2) 1.0000 ± 0.0000 (1)
RectPushApp 0.9472 ± 0.0007 (1) 0.0073 ± 0.0001 (2) 0.1171 ± 0.0002 (2) 0.6422 ± 0.0046 (3) 0.0497 ± 0.0039 (1) 1.0000 ± 0.0000 (1)

Logistic 0.9356 ± 0.0005 (1) 0.0014 ± 0.0000 (2) 0.0892 ± 0.0001 (2) 0.5651 ± 0.0025 (4) 0.0008 ± 0.0001 (3) 0.6600 ± 0.0427 (2)
ijcnn1 TopPush 0.9101 ± 0.0007 (4) 0.0015 ± 0.0000 (1) 0.0898 ± 0.0001 (1) 0.6113 ± 0.0016 (1) 0.0009 ± 0.0001 (2) 0.6500 ± 0.0428 (3)

RectPush 0.9301 ± 0.0006 (2) 0.0015 ± 0.0000 (1) 0.0898 ± 0.0000 (1) 0.5935 ± 0.0022 (3) 0.0011 ± 0.0001 (1) 0.7000 ± 0.0365 (1)
RectPushApp 0.9283 ± 0.0006 (3) 0.0015 ± 0.0000 (1) 0.0898 ± 0.0000 (1) 0.5953 ± 0.0021 (2) 0.0011 ± 0.0001 (1) 0.7000 ± 0.0365 (1)

Logistic 0.9676 ± 0.0009 (1) 0.0074 ± 0.0003 (4) 0.1232 ± 0.0003 (4) 0.6631 ± 0.0034 (4) 0.0002 ± 0.0002 (4) 0.6500 ± 0.0619 (4)
w8a TopPush 0.9219 ± 0.0061 (4) 0.0104 ± 0.0001 (3) 0.1252 ± 0.0005 (3) 0.6978 ± 0.0085 (3) 0.1131 ± 0.0267 (2) 0.9800 ± 0.0200 (3)

RectPush 0.9639 ± 0.0015 (3) 0.0105 ± 0.0001 (2) 0.1279 ± 0.0002 (2) 0.7594 ± 0.0060 (2) 0.1072 ± 0.0357 (3) 0.9900 ± 0.0100 (2)
RectPushApp 0.9655 ± 0.0011 (2) 0.0106 ± 0.0001 (1) 0.1285 ± 0.0003 (1) 0.7783 ± 0.0029 (1) 0.2174 ± 0.0293 (1) 1.0000 ± 0.0000 (1)

Logistic 0.9852 ± 0.0001 (2) 0.0013 ± 0.0000 (1) 0.0896 ± 0.0000 (1) 0.9674 ± 0.0003 (3) 0.0927 ± 0.0064 (3) 1.0000 ± 0.0000 (1)
real-sim TopPush 0.9804 ± 0.0002 (3) 0.0013 ± 0.0000 (1) 0.0894 ± 0.0000 (2) 0.9570 ± 0.0007 (4) 0.0403 ± 0.0087 (4) 1.0000 ± 0.0000 (1)

RectPush 0.9857 ± 0.0001 (1) 0.0013 ± 0.0000 (1) 0.0896 ± 0.0000 (1) 0.9696 ± 0.0003 (2) 0.1097 ± 0.0157 (2) 1.0000 ± 0.0000 (1)
RectPushApp 0.9857 ± 0.0001 (1) 0.0013 ± 0.0000 (1) 0.0896 ± 0.0000 (1) 0.9697 ± 0.0003 (1) 0.1107 ± 0.0139 (1) 1.0000 ± 0.0000 (1)

Logistic 0.9810 ± 0.0002 (3) 0.0004 ± 0.0000 (1) 0.0769 ± 0.0000 (2) 0.9803 ± 0.0003 (3) 0.3711 ± 0.0229 (1) 1.0000 ± 0.0000 (1)
nsl-kdd TopPush 0.9703 ± 0.0014 (4) 0.0004 ± 0.0000 (1) 0.0769 ± 0.0000 (2) 0.9750 ± 0.0013 (4) 0.2261 ± 0.0242 (2) 1.0000 ± 0.0000 (1)

RectPush 0.9831 ± 0.0005 (2) 0.0004 ± 0.0000 (1) 0.0770 ± 0.0000 (1) 0.9875 ± 0.0003 (2) 0.0786 ± 0.0435 (4) 1.0000 ± 0.0000 (1)
RectPushApp 0.9887 ± 0.0001 (1) 0.0004 ± 0.0000 (1) 0.0770 ± 0.0000 (1) 0.9892 ± 0.0002 (1) 0.1059 ± 0.0725 (3) 1.0000 ± 0.0000 (1)

Logistic 0.6083 ± 0.0021 (4) 0.0004 ± 0.0000 (1) 0.0731 ± 0.0001 (4) 0.0762 ± 0.0011 (4) 0.0000 ± 0.0000 (2) 0.1700 ± 0.0300 (2)
kddcup98 TopPush 0.6129 ± 0.0016 (2) 0.0004 ± 0.0000 (1) 0.0734 ± 0.0001 (3) 0.0796 ± 0.0010 (3) 0.0000 ± 0.0000 (2) 0.0800 ± 0.0291 (4)

RectPush 0.6124 ± 0.0016 (3) 0.0004 ± 0.0001 (1) 0.0735 ± 0.0001 (2) 0.0797 ± 0.0010 (2) 0.0001 ± 0.0001 (1) 0.2000 ± 0.0516 (1)
RectPushApp 0.6142 ± 0.0015 (1) 0.0004 ± 0.0000 (1) 0.0736 ± 0.0001 (1) 0.0804 ± 0.0010 (1) 0.0000 ± 0.0000 (2) 0.1600 ± 0.0371 (3)

Logistic 0.7938 ± 0.0008 (2) 0.0011 ± 0.0000 (1) 0.0862 ± 0.0000 (2) 0.7936 ± 0.0008 (3) 0.0051 ± 0.0017 (4) 0.9300 ± 0.0260 (3)
kdd04 TopPush 0.7494 ± 0.0030 (4) 0.0011 ± 0.0000 (1) 0.0859 ± 0.0000 (3) 0.7697 ± 0.0024 (4) 0.0183 ± 0.0029 (1) 0.9900 ± 0.0100 (1)

RectPush 0.7906 ± 0.0014 (3) 0.0011 ± 0.0000 (1) 0.0863 ± 0.0000 (1) 0.7975 ± 0.0009 (1) 0.0111 ± 0.0042 (2) 0.9300 ± 0.0260 (3)
RectPushApp 0.7939 ± 0.0008 (1) 0.0011 ± 0.0000 (1) 0.0863 ± 0.0000 (1) 0.7967 ± 0.0008 (2) 0.0065 ± 0.0025 (3) 0.9400 ± 0.0221 (2)

Logistic 2.2857 2.3571 2.7143 3.2143 3.2143 2.3571
Average rank TopPush 3.4286 1.5714 2.2143 2.6429 1.9286 1.9286

RectPush 2.5714 1.4286 1.5714 2.1429 1.8571 1.2143
RectPushApp 1.3571 1.4286 1.2857 1.6429 2.1429 1.7857

Table 4 Mean and standard error of performance measures over 10 trials on real-world datasets (selecting
parameters with AP). The rank of each method on each dataset is shown in parentheses.

arises from the simple observation that under distributions with noise, there may not be any
instances that are deterministically positive; consequently, each instance is required to score
at least as much as every other instance, which results in a trivial solution. We proposed
a simple rectification that dispels such trivial solutions, while being as simple to optimise.
This arises from viewing the original PTop as a form of constrained loss minimisation; by
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Dataset TopPush RectPush RectPushApp

german 0.00 ± 0.00 0.02 ± 0.00 0.05 ± 0.00
abalone 0.01 ± 0.00 0.03 ± 0.00 0.07 ± 0.00
spambase 0.02 ± 0.00 0.94 ± 0.00 1.67 ± 0.01
magic 0.04 ± 0.00 0.53 ± 0.00 0.11 ± 0.00
news20-forsale 0.06 ± 0.00 12.02 ± 0.02 8.31 ± 0.01
skin 25.87 ± 0.29 0.16 ± 0.00 0.55 ± 0.01
activity 1.68 ± 1.45 11.36 ± 0.68 17.68 ± 1.21
covtype-binary 0.10 ± 0.00 11.68 ± 0.04 2.04 ± 0.01
ijcnn1 0.21 ± 0.00 5.15 ± 0.05 1.36 ± 0.01
w8a 61.02 ± 0.15 49.12 ± 0.33 47.03 ± 0.18
real-sim 0.14 ± 0.00 13.08 ± 0.18 3.13 ± 0.04
nsl-kdd 23.94 ± 0.29 32.84 ± 0.31 59.10 ± 0.46
kddcup98 1.66 ± 0.07 2.21 ± 0.13 3.30 ± 0.15
kddcup04 1.68 ± 1.45 11.36 ± 0.68 8.56 ± 1.24

Table 5 Training times (in seconds) for the TopPush, RectPush, and RectPushApp.

suitably modifying the underlying loss, we can penalise ties amongst instances, and thus
avoid trivial solutions.

There are several possible directions for future work. Most immediately, it is of interest
to study finite sample behaviour of the PTop and RectTop minimisers more carefully. In
particular, removing the need for finiteness of the instance-space would make the general-
isation bounds more practically relevant. It would also be of interest to establish formally
the finite-sample probabilities of obtaining a trivial solution from PTop minimisation; this
would theoretically ground our empirical findings in Figure 1(d). Further, establishing regret
bounds relating RectTop performance to performance with respect to other top ranking mea-
sures would justify its use when optimising such measures. This would be of interest owing
to such measures typically being harder to optimise than the PTop and RectTop. Finally, we
hope our result motivates the study of other top ranking risks that avoid trivial solutions.
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A Proofs of results in the main body

Proof (Proof of Proposition 1)
Let

M( f ; D) .= max
x′∈supp(Q)

f (x′).

The desired objective is

min
f

max
x′∈supp(Q)

EX∼P
[
φ( f (X) − f (x′))

]
= min

f
EX∼P [φ( f (X) −M( f ; D))] since φ is non-increasing

= min
f

∑
P(x)>0,Q(x)=0

P(x) · φ( f (x) −M( f ; D)) +
∑

P(x)>0,Q(x)>0
P(x) · φ( f (x) −M( f ; D)).

Clearly, the set of optimal scorers is closed under translation. Thus, without loss of generality, we can
assume that M( f ; D) = 0, giving the objective

min
f

∑
P(x)>0,Q(x)=0

P(x) · φ( f (x)) +
∑

P(x)>0,Q(x)>0
P(x) · φ( f (x))

subject to the constraint that f (x) ≤ 0 for Q(x) > 0 (so that indeed M( f ) = 0 is an upper bound on all
negative scores), and (∃x)Q(x) > 0 ∧ f (x) = 0 (so that indeed M( f ) = 0 is attained).

Suppose thatη(x) = 1, i.e. P(x) > 0,Q(x) = 0. Then, the only appearance of f (x) is in the corresponding
φ term in the first summation above. To minimise this term, we need to choose f (x) ∈ argmin

v
φ(v).

Suppose that η(x) ∈ (0, 1), i.e. P(x) > 0,Q(x) > 0. Then, f (x) appears in the φ term in the second
summation above, and must satisfy f (x) ≤ 0 by the constraint. Choosing f (x) < 0 would be suboptimal,
because for the appearance in the second summation, we would be considering φ of a negative quantity, and
thus be attaining a higher loss, by assumption that φ is non-increasing and φ(0) < φ(0−) . Thus, we need to
choose f (x) = 0 i.e. f (x) is identical for all such x.

Suppose that η(x) = 0, i.e. P(x) = 0,Q(x) > 0. Then, the only appearance of f (x) is in the constraint
f (x) ≤ 0. We can choose any such f (x); the precise choice does not matter, as all such choices result in the
same M( f ; D), and thus do not affect the final objective.

To summarise, we have

η(x) = 1 =⇒ f (x) ∈ argmin
v

φ(v)
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η(x) ∈ (0, 1) =⇒ f (x) = 0
η(x) = 0 =⇒ f (x) ≤ 0

and by translation invariance of the objective, the result follows.

Proof (Proof of Corollary 1)We have Im(η) ⊆ (0, 1) since Im(u) ⊆ (0, 1), and by Cauchy-Schwartz and the
assumption on ‖w∗ ‖2 and7 ‖x ‖2 we have | 〈w∗, x 〉 | < +∞ (so that we do not consider e.g. the possibility that
u(+∞) = 1). Thus, by Proposition 1, the set of Bayes-optimal scorers for Rptop( f ; D, φ) is the set of constant
functions. This has non-empty intersection with the set of linear scorers, since we can just use fw for w = 0.
Thus, w = 0 this must be a risk minimiser when using linear scorers.

Proof (Proof of Lemma 1) We can rewrite the minimisation of the PTop risk as follows:

min
f ∈F

Rptop( f ; D, φ) = min
f ∈F

max
x′∈supp(Q)

EX∼P
[
φ

(
f (X) − f (x′))

) ]
= min

f ∈F
EX∼P

[
φ

(
f (X) − max

x′∈supp(Q)
f (x′))

)]
= min

g∈F
EX∼P [φ (g(X))] : max

x′∈supp(Q)
g(x′) = 0,

where the last line uses the translation invariance ofF to define a new scorerg : x 7→ f (x)−maxx′∈supp(Q) f (x
′).

To argue that the equality constraint maxx′∈supp(Q) g(x
′) = 0 can be replaced by an inequality, suppose

g∗ ∈ argmin
g

EX∼P [φ (g(X))] : max
x′∈supp(Q)

g(x′) ≤ 0,

and M(g; D) < 0. We show that g∗ can be equivalently converted to an optimal solution with M(g; D) = 0:
replace g∗ by g̃, where all instances in supp(Q) have score increased by −M(g; D). The resulting g̃ has
M(g̃; D) = 0; further, it cannot result in an increase to the objective, since φ is non-increasing. Hence, there
is always an optimal solution to the inequality constrained objective that satisfies M(g; D) = 0.

Note now that we can rewrite the constraint

min
f

Rptop( f ; D, φ) = min
g

EX∼P [φ (g(X))] : max
x′∈supp(Q)

g(x′) = 0

= min
g

EX∼P [φ (g(X))] : max
x′∈supp(Q)

g(x′) ≤ 0

= min
g

EX∼P [φ (g(X))] + EX′∼Q
[
`(−1, g(X′))

]
= min

g
Rbal(g; D, `).

Proof (Proof of Proposition 2) The risk is

Rrtop( f ; D, φ) = Rbal( f ; D, `)

= EX∼P [`(+1, f (X))] + EX′∼Q
[
`(−1, f (X′))

]
= EX∼M

[
π−1 · η(X) · `(+1, f (X)) + (1 − π)−1 · (1 − η(X)) · `(−1, f (X))

]
.

The Bayes-optimal scorers may be computed pointwise. Pick any x ∈ X, and consider the minimiser of the
inner expression:

f ∗(x) ∈ argmin
v∈R

π−1 · η(x) · φ(v) + (1 − π)−1 · (1 − η(x)) ·

{
+∞ if v > 0
φ(−v) if v ≤ 0.

(20)

When η(x) = 1, the minimiser is evidently just any element of argmin v∈Rφ(v), which is (0,∞). When
η(x) < 1, by the implicit constraint on the negative scores owing to the partial loss `−1,

f ∗(x) ∈ argmin
v∈(−∞,0]

π−1 · η(x) · φ(v) + (1 − π)−1 · (1 − η(x))φ(−v)

7 We assumed X ⊆ Rd , rather than Rd
∗ .



22 Aditya Krishna Menon

= argmin
v∈(−∞,0]

π−1 · η(x) · φ(v) + (1 − π)−1 · (1 − η(x))(1 − φ(v))

= argmin
v∈(−∞,0]

(π−1 · η(x) + (1 − π)−1 · (1 − η(x))) · φ(v)

= argmin
v∈(−∞,0]

(η(x) − π) · φ(v).

Thus, when η(x) ∈ (π, 1), the optimal solution is just {0}; when η(x) = π, the optimal solution is any
element of (−∞, 0]; and when η(x) ∈ [0, π), the optimal solution is any element of (−∞, 0).

Proof (Proof of Proposition 3) We proceed as per the proof of Proposition 20, and begin the form of the
minimiser in Equation 20. When η(x) = 1, the minimiser is evidently just f ∗(x) = argmin v∈Rφ(v), which
is8 f ∗(x) = Ψ(1). When η(x) < 1, by the implicit constraint on the negative scores owing to the partial loss
`−1,

f ∗(x) ∈ argmin
v∈(−∞,0]

π−1 · η(x) · φ(v) + (1 − π)−1 · (1 − η(x))φ(−v)

Now, the unconstrained minimiser is f ∗unc(x) = Ψ̄π (η(x)), since φ is strictly proper composite with link Ψ,
and a simple calculation reveals that the balanced version of such a loss is also strictly proper composite with
link Ψ̄π (for a proof, see e.g. Menon and Ong (2016, Lemma 5)). If f ∗unc(x) ≤ 0, clearly this remains the
minimiser. If f ∗unc(x) > 0, then the minimiser must be 0, because of convexity of L(η(x), v) in v (being the
convex combination of two convex functions). Thus, the minimiser is min(0, Ψ̄π ◦ η(x)), and

argmin
f

Rrtop( f ; D, φ) =

{
Ψ(1) if η(x) = 1
Ψ̄π (η(x)) ∧ 0 else.

(21)

We can be more precise about the case η(x) < 1: any strictly proper composite margin loss hasΨ(1/2) = 0
by Reid and Williamson (2010, Section 4.3). By definition of Ψ̄π and invertibility of Ψ, we have

Ψ̄π (u) ≥ 0 ⇐⇒ (Ψ ◦ gπ )(u) ≥ 0

⇐⇒ gπ (u) ≥ Ψ
−1(0)

⇐⇒ gπ (u) ≥ 1/2

⇐⇒ 2 · (1 − π) · u ≥ π + (1 − 2 · π) · u
⇐⇒ u ≥ π.

Thus, Ψ̄π ◦ η is non-negative whenever η ∈ [π, 1]. From Equation 21, this means that when η(x) ∈ [π, 1),
the Bayes-optimal scorer is 0. The argument for this case being attained by some instance for non-separable
D where η takes on more than two distinct values is as per Example 4.

Proof (Proof of Proposition 4) We follow closely the proof of Agarwal (2011, Theorem 5.1). First,

R( f ; D, φ) = EX∼P

[
φ

(
f (X) − max

x∈supp(Q)
f (x)

)]
+ EX∼Q

[
φ

(
max

x∈supp(Q)
f (x) − f (X)

)]
= max

x∈supp(Q)
EX∼P [φ ( f (X) − f (x))] + min

x∈supp(Q)
EX∼Q [φ ( f (x) − f (X))]

≤ max
x∈supp(Q)

(
EX∼P [φ ( f (X) − f (x))] + EX∼Q [φ ( f (x) − f (X))]

)
.

The inequality above is since, for any functions f , g, if x∗ ∈ argmax x f (x)

max
x

f (x) +min
x

g(x) = f (x∗) + g(x∗) +min
x

g(x) − g(x∗)

≤ f (x∗) + g(x∗)

≤ max
x
( f (x) + g(x)) .

Now define

L( f ; P,Q, x, φ) .= EX∼P [φ ( f (X) − f (x))] + EX∼Q [φ ( f (x) − f (X))]
R∞( f ; P,Q, φ) .= max

x∈supp(Q)
L( f ; P,Q, x), (22)

8 In fact, it is easy to check that Ψ(1) = Ψ̄π (1).



The risk of trivial solutions in bipartite top ranking 23

so that R( f ; D, φ) ≤ R∞( f ; P,Q, φ).
We are interested in bounding R( f ; D, `01). Following Agarwal (2011, Theorem 5.1), we consider the

margin loss at γ > 0,

`γ (v)
.
= Jv < γK +

1
2
· Jv = γK.

Clearly, R∞( f ; P,Q, `01) ≤ R∞( f ; P,Q, `γ ).
We now focus on generalisation bounds for R∞( f ; P,Q, `γ ), which imply generalisation bounds for

R( f ; D, `01). (For clarity, in the sequel we will drop the dependence on `γ .) Specifically, suppose we have a
sample S ∼ Dn++n− , which we will think of as a positive sample S+ ∼ Pn+ and negative sample S− ∼ Qn− .
We are interested in the uniform deviation bound

sup
f ∈F

R∞( f ; P,Q) − R∞( f ; S+, S−),

where, following the notation of Equation 22, we have the natural empirical risks

L( f ; S+, S−, x, φ) .=
1
n+

n+∑
i=1

φ
(
f (x+i ) − f (x)

)
+

1
n−

n−∑
j=1

φ
(
f (x) − f (x−j )

)
R∞( f ; S+, S−, φ) .= max

1≤ j≤n−
L( f ; S+, S−, x j ).

To establish our bound, we will also need the following hybrid risk,

L( f ; P, S−, x, φ) .= EX∼P [φ ( f (X) − f (x))] +
1
n−

n−∑
j=1

φ
(
f (x) − f (x−j )

)
.

As in Agarwal (2011, Theorem 5.1), we decompose the quantity of interest, but with one additional term
to account for our risk having an additional expectation:

R∞( f ; P,Q) − R∞( f ; S+, S−) =R∞( f ; P,Q) − max
1≤ j≤n−

L( f ; P,Q, x−j )+

max
1≤ j≤n−

L( f ; P, S−, x−j ) − R∞( f ; S+, S−)+

max
1≤ j≤n−

L( f ; P,Q, x−j ) − max
1≤ j≤n−

L( f ; P, S−, x−j ).

We bound the deviations for each of these terms for a fixed f ∈ F.
First term. We are interested in

R∞( f ; P,Q) − max
1≤ j≤n−

L( f ; P,Q, x−j ) = max
x∈supp(Q)

L( f ; P,Q, x) − max
1≤ j≤n−

L( f ; P,Q, x−j ).

Here, the difference arises simply from taking an empirical versus distributional maximum. Following the
strategy of Agarwal (2011, Theorem 5.1), we have

P1
.
= PS−

(
R∞( f ; P,Q) − max

1≤ j≤n−
L( f ; P,Q, x−j ) > ε/6

)
= PS−

(
max

1≤ j≤n−
L( f ; P,Q, x−j ) < R∞( f ; P,Q) − ε/6

)
= PS−

(
(∀1 ≤ j ≤ n−) L( f ; P,Q, x−j ) < R∞( f ; P,Q) − ε/6

)
=

n−∏
j=1

Px−
j

(
L( f ; P,Q, x−j ) < R∞( f ; P,Q) − ε/6

)
since x−j are drawn iid

= (ρ( f , γ, ε/6))nNeg,

where
ρ( f , γ, ε/6) .= Px∼Q (L( f ; P,Q, x) < R∞( f ; P,Q) − ε/6) .

Second term. We are interested in

max
1≤ j≤n−

L( f ; P, S−, x−j ) − R∞( f ; S+, S−) = max
1≤ j≤n−

L( f ; P, S−, x−j ) − max
1≤ j≤n−

L( f ; S+, S−, x−j ).
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Here, the difference arises simply from replacing the positive distribution with its empirical version. Following
the strategy of Agarwal (2011, Theorem 5.1),

P2
.
= PS

(
max

1≤ j≤n−
L( f ; P, S−, x−j ) − max

1≤ j≤n−
L( f ; S+, S−, x−j ) > ε/6

)
≤ PS

(
max

1≤ j≤n−

���L( f ; P, S−, x−j ) − L( f ; S+, S−, x−j )
��� > ε/6) since max f (x) −max g(x) ≤ max( f (x) − g(x))

≤ PS

(
(∃1 ≤ j ≤ n−)

���L( f ; P, S−, x−j ) − L( f ; S+, S−, x−j )
��� > ε/6)

≤

n−∑
j=1

PS

(���L( f ; P, S−, x−j ) − L( f ; S+, S−, x−j )
��� > ε/6) by the union bound.

Observe now that

L( f ; P, S−, x−j ) − L( f ; S+, S−, x−j ) = EX∼P

[
φ

(
f (X) − f (x−j )

)]
−

1
n+

n+∑
i=1

φ
(
f (x+i ) − f (x−j )

)
,

so that the term is independent of the negative sample S−. Further, the difference is between a random variable
and its expectation. We can thus write

P2 =
n−∑
j=1

PS+,x−
j

(���L( f ; P, S−, x−j ) − L( f ; S+, S−, x−j )
��� > ε/6)

≤ n− · sup
x−∈supp(Q)

PS+
(��L( f ; P, S−, x−) − L( f ; S+, S−, x−)

�� > ε/6)
≤ 2n− · e−ε

2n+/18 by Hoeffding’s inequality.

Third term. We are interested in

max
1≤ j≤n−

L( f ; P,Q, x−j ) − max
1≤ j≤n−

L( f ; P, S−, x−j ).

Here, the difference arises simply from replacing the negative distribution with its empirical version. We
follow an identical strategy to bounding the second term, but require an additional step of replacing the
maximum over the sample with the maximum over the negative support:9

P2
.
= PS

(
max

1≤ j≤n−
L( f ; P,Q, x−j ) − max

1≤ j≤n−
L( f ; P, S−, x−j ) > ε/6

)
≤ PS

(
max

1≤ j≤n−

���L( f ; P,Q, x−j ) − L( f ; P, S−, x−j )
��� > ε/6)

≤ PS

(
max

x−∈supp(Q)
|L( f ; P,Q, x−) − L( f ; P, S−, x−) | > ε/6

)
≤ PS

(
(∃x− ∈ supp(Q))

��L( f ; P, S−, x−) − L( f ; S+, S−, x−)
�� > ε/6)

≤
∑

x−∈supp(Q)
PS

(��L( f ; P, S−, x−) − L( f ; S+, S−, x−)
�� > ε/6) .

Observe now that

L( f ; P,Q, x−) − L( f ; P, S−, x−) = EX∼Q [φ ( f (x
−) − f (X))] −

1
n−

n−∑
j=1

φ
(
f (x−) − f (x−j )

)
,

so that the term is independent of the positive distribution. Further, for fixed x−, the difference is between a
random variable and its expectation. We can thus write

P3 =
∑

x−∈supp(Q)
PS

(��L( f ; P, S−, x−) − L( f ; S+, S−, x−)
�� > ε/6)

9 Without this step, we would no longer be comparing a random variable with its expectation, as each
negative instance features both in the maximum and empirical risk.
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≤ 2nq · e−ε
2n−/18 by Hoeffding’s inequality.

We remark that the dependence on nq could be improved to one on a suitable covering number for supp(Q),
since the max term for a suitable cover will be close to that studied above. In such a bound we would have to
consider ε − ε0, where ε0 is the discrepancy between the two max terms, which will depend on the granularity
of the cover.

Final bound. As per , Theorem 5.1 a covering number argument to F applied to the above yields that for
any ε, γ > 0,

Rrtop( f ; D) ≤ R∞( f ; S, `γ ) + ε
with probability at least 1 − δ, where

δ = N(F, εγ/8) ·
(
(ρ( f , γ, ε/6))n− + 2n− · e−ε

2n+/18 + 2nq · e−ε
2n−/18

)
.

Proof (Proof of Proposition 5) Let F(w, b; S, φ, λ) denote the regularised primal objective. For simplicity,
let φ−1(v) = φ(−v). Starting from Equation 18, by rewriting φ in terms of its convex conjugate10 φ∗ and
appealing to strong duality, we have

min
w,b

F(w, b; S, φ, λ) = min
w,b

λ

2
| |w | |2 +

1
n+

n+∑
i=1

φ
(
wT x+i + b

)
+

1
n−

n−∑
j=1

φ−1

(
wT x−j + b

)
: wT x−j + b ≤ 0.

= min
w,b

max
ᾱ, β̄∈R,γ̄≥0

λ

2
| |w | |2 +

1
n+

n+∑
i=1

(
ᾱi · (w

T x+i + b) − φ∗ (ᾱi )
)
+

1
n−

n−∑
n=1

(
β̄ j · (w

T x−j + b) − φ∗
−1

(
β̄ j

) )
+

1
n−

n−∑
j=1
γ̄j · (w

T x−j + b)

= max
ᾱ, β̄∈R,γ̄≥0

min
w,b

λ

2
| |w | |2 +

1
n+

n+∑
i=1

(
ᾱi · (w

T x+i + b) − φ∗ (ᾱi )
)
+

1
n−

n−∑
n=1

(
β̄ j · (w

T x−j + b) − φ∗
−1

(
β̄ j

) )
+

1
n−

n−∑
j=1
γ̄j · (w

T x−j + b)

= max
ᾱ, β̄∈R,γ̄≥0

min
w

λ

2
| |w | |2 + wT ©­«

n+∑
i=1
(1/n+)ᾱi x+i +

n−∑
j=1
(1/n−)(β̄ j + γ̄j )x

−
j
ª®¬+

min
b

©­«
n+∑
i=1
(1/n+)ᾱi + (1/n−)

n−∑
j=1
(β̄ j + γ̄j )

ª®¬ · b − 1
n+

n+∑
i=1

φ∗ (ᾱi ) −
1
n−

n−∑
j=1

φ∗
−1

(
β̄ j

)
.

This is an appropriate juncture to pause. Observe that the optimal w is

w∗ = −
1
λ

©­«
n+∑
i=1
(1/n+)ᾱi x+i +

n−∑
j=1
(1/n−)(β̄ j + γ̄j )x

−
j
ª®¬ ,

and that for the objective to be bounded away from −∞, we must have 1
n+

∑n+
i=1 ᾱi +

1
n−

∑n−
j=1(β̄ j + γ̄j ) = 0.

Let us rescale the variables so that αi = −(1/n+) · ᾱi , β j = (1/n−) · β̄ j , and γj = (1/n−) · γ̄j . Then,

w∗ = −
1
λ

©­«
n+∑
i=1

αi x
+
i −

n−∑
j=1
(β j + γj )x

−
j
ª®¬ ,

and the constraint is
∑n+

i=1 αi =
∑n−

j=1(β j + γj ). Thus,

min
w,b

F(w, b; S, λ) = max
α,β,γ

−
1

2λ

������
������ n+∑
i=1

αi x
+
i −

n−∑
j=1
(β j + γj )x

−
j

������
������
2

−
1
n+

n+∑
i=1

φ∗ (−n+ · αi ) −
1
n−

n−∑
j=1

φ∗
−1

(
n− · β j

)
:

n+∑
i=1

αi =

n−∑
j=1
(β j + γj ), α ∈ −dom(φ∗), β ∈ dom(φ∗

−1), γ ≥ 0.

10 This is allowed by the Fenchel-Moreau theorem Zălinescu (2002, Theorem 2.3.4) since φ is assumed
differentiable, and hence lower semi-continuous, and is implicitly assumed to be a proper convex function.
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Recalling that φ∗
−1(y) = (φ(−v)

∗)(y) = φ∗(−y), we get

min
w,b

F(w, b; S, λ) = max
α,β,γ

−
1

2λ

������
������ n+∑
i=1

αi x
+
i −

n−∑
j=1
(β j + γj )x

−
j

������
������
2

−
1
n+

n+∑
i=1

φ∗ (−n+ · αi ) −
1
n−

n−∑
j=1

φ∗
(
−n− · β j

)
:

n+∑
i=1

αi =

n−∑
j=1
(β j + γj ), α ∈ −dom(φ∗), β ∈ −dom(φ∗), γ ≥ 0.

Suppose for example that φ(v) = max(0, 1 − v)2. Then an elementary calculation reveals that φ∗(y) =
y + y2/4 when y ≤ 0, and +∞ otherwise, so that φ∗(−y) = −y + y2/4 when y ≥ 0, and +∞ otherwise. Thus,
in this case we would have the dual problem and objective

min
w,b

F(w, b; S, λ) = max
α,β,γ

−
1

2λ

������
������ n+∑
i=1

αi x
+
i −

n−∑
j=1
(β j + γj )x

−
j

������
������
2

+ 1Tα −
n+

4
· αTα + 1T β −

n−

4
· βT β :

n+∑
i=1

αi =

n−∑
j=1
(β j + γj )

α, β, γ ≥ 0.

B Details of dual optimisation

We can optimise the dual objective of Equation 19 by leveraging Li et al (2014a, Algorithm 1). Specifically,
we have the problem

min
(α,β,γ)∈Θ

g(α, β, γ)

where

g(α, β, γ) =
1

2λ
����X+α − X−(β + γ)

����2 + 1
n+

n+∑
n=1

φ∗ (−n+ · αn) +
1
n−

n−∑
m=1

φ∗ (−n− · βm) .

and
Θ = {(α, β, γ) : 1Tα = 1T (β + γ)}.

We mimic the key steps of Li et al (2014a, Algorithm 1), following the notations of that paper:

– Auxiliary solutions. We keep iterates of auxiliary solutions {sα
k
, s
β
k
, s
γ
k
}, updated via

sαk = (1 +ωk ) · αk −ωk · αk−1

s
β
k
= (1 +ωk ) · βk −ωk · βk−1

s
γ
k
= (1 +ωk ) · γk −ωk · γk−1

where ωk is as per Li et al (2014a, Algorithm 1, Line 4).
– Gradient computation. We compute the gradients of the objective with respect to each variable:

∇αg(α, β, γ) =
1
λ
· (X+)T (X+α − X−(β + γ)) −

n+∑
n=1
(φ∗)′(−n+ · αn)

∇βg(α, β, γ) = −
1
λ
· (X−)T (X+α − X−(β + γ)) −

n−∑
m=1
(φ∗)′(−n− · βn)

∇γg(α, β, γ) = −
1
λ
· (X+)T (X+α − X−(β + γ)).

(23)

When φ(v) = max(0, 1 − v)2 for example, we have

∇αg(α, β, γ) =
1
λ
· (X+)T (X+α − X−(β + γ)) − 1 +

n+

2
· α
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∇βg(α, β, γ) = −
1
λ
· (X−)T (X+α − X−(β + γ)) − 1 +

n−

2
· β

∇γg(α, β, γ) = −
1
λ
· (X+)T (X+α − X−(β + γ)).

– Projection. We compute a projection of a tentative solution (α0, β0, γ0) onto the feasible set Θ by solving

min
α,β,γ

1
2
‖α − α0 ‖

2
2 +

1
2
‖β − β0 ‖

2
2 +

1
2
‖γ − γ0 ‖

2
2 :

1Tα = 1T (β + γ), α, β, γ ≥ 0

which is equivalently

min
α,δ

1
2
‖α − α0 ‖

2
2 +

1
2
‖δ − δ0 ‖

2
2+ :

1Tα = 1T δ, α, δ ≥ 0

where δ = [β;γ] ∈ R2·n− and δ0 = [β0;γ0] ∈ R2·n− . We note that the above can thus be solved by
directly invoking the projection subroutine of Li et al (2014a, Section 3.2.2), where we simply read off
β∗ and γ∗ from the augmented solution δ∗.

– Stopping condition. We compute as part of the stopping condition the squared norms ‖∇αg(α, β, γ) ‖22 ,
‖∇βg(α, β, γ) ‖

2
2 and ‖∇γg(α, β, γ) ‖22 using Equation 23.

C The reverse RectTop risk

Proposition 3 shows thatminimisation of the rectified PTop accurately orders the negatives, while collapsing all
positives into a single score. However, Clémençon and Vayatis (2007, Section 3.1) suggested the gold-standard
scorer for top ranking problems should have the opposite behaviour.

In fact, this can be achieved with a simple variant of Equation 13: suppose

`(+1, v) =

{
φ(v) if v ≥ 0
+∞ if v < 0

`(−1, v) = φ(−v).

Now define the reverse RectTop φ-risk as

Rrbot( f ; D, φ) .= Rbal( f ; D, `) = Rrtop(− f ; Drev, `), (24)

where Drev = (Q, P, π) reverses the class-conditionals in D. This rectifies the following negatives at the
bottom risk, per Rudin (2009, Section 7):

Rnbot( f ; D, φ) = max
x∈supp(P)

EX′∼Q
[
φ(−( f (x) − f (X′)))

]
,

which pushes negatives to score lower than every positive.

Example 6 Combining Equation 24 with Proposition 3, the Bayes-optimal scorer for φ(v) = e−v is

f ∗(x) =


+∞ if η(x) = 1
1
2 log η(x)

1−η(x) −
1
2 log π

1−π if η(x) ∈ [π, 1)
{0} if η(x) ∈ [0, π)

so that, as intended, only instances with η greater than average are accurately modelled.


