
Five common multilabel reductions implicitly optimise for precision or recall

Different reductions target either precision or recall! 
Subtle differences in the loss thus have non-trivial 
effects; e.g., ℓPAL-Norm(y, f(x)) = (Σi  yi)

-1 ℓPAL(y, f(x)), but 
the optimal solutions for the two are not scalings of 
each other. Further remarks:

● PAL scores are not calibrated across instances!
● PAL may ⪰ OVA since it directly bounds top-k loss
● PAL with a multiclass OVA loss ≠ multilabel OVA; PAL 

implicitly places a greater weight on each “negative” label 
Key question of this work

Such reductions can be practically effective, but:
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Multilabel classification via reductions Optimal scores for multilabel reductions

Multilabel classification: predict a  binary label vector
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Given (x , y) for y ∈ { 0, 1 }L, find f(x)            

Ideally, want fi(x) high if yi = 1. The challenge is that L 
may be large; so how do we efficiently find such an f?

Common algorithms reduce the problem to binary or 
multiclass learning; e.g., we may create

● multiple binary examples, one for each label
● multiple multi-class examples, one for each positive label
● one multi-class example for a random positive label
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Precision and recall@k are standard metrics for 
retrieval settings. They measure the # of positives in 
the top-k scoring indices, suitably normalised:

Multi-class examples,
fed into e.g. softmax 

cross-entropy
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Here, k = 3

Multilabel metrics: precision and recall

Prec@k(f) = 𝔼(x, y)[ | topk(f(x)) ∩ pos(y) | / k ]
 Rec@k(f) = 𝔼(x, y)[ | topk(f(x)) ∩ pos(y) | / |pos(y)| ]

To compare different reductions, we explicate their 
implicit multilabel losses, i.e., ℓ(y, f(x)):

Implicit losses for multilabel reductions

One-versus-all (OVA)

Pick-all-labels (PAL)

OVA normalised

PAL normalised
Pick-one-label (POL) For log-loss,

KL(label, prediction)

Multiclass loss; has 
label “competition”

Illustration of differences in reductions

Synthetic problem where normalised reduction gives 
recall gains, at the expense of precision.

what multilabel metric do they optimise?

Key contribution of this work

five common reductions implicitly optimise 
for either precision or recall@k!

Answering this helps inform the choice of reduction, 
depending on our end goal.

Fact: Given a distribution P(x, y), the optimal f* for 
these metrics preserve the ordering of:

(Prec@k) P(yi = 1 | x)

 (Rec@k) P(y’i = 1 | x) = P(yi = 1 | x) · 𝔼[ (1 +Σj≠i  yj)
-1 ]

Different 
normaliser

Marginal relevance Non-constant 
weighting

Binary loss

Note that owing to the weighting above, these 
optimal solutions are incompatible in general!

To begin, we study a basic property of these metrics.

Fact: Given a distribution P(x, y), the optimal fi* is: 

(OVA) P(yi = 1 | x)

 (PAL) P(yi = 1 | x) / N(x)

(Rest) P(y’i = 1 | x)

Expected # of +’ves
Doesn’t vary with i

Equipped with these losses, observe that, e.g.,

Prec@k(f) = 𝔼(x, y)[ Σi ∊ [L] ℓtop-k(y, fi(x)) / k ],

where ℓtop-k is a “top-k” multiclass loss; i.e., precision 
is equivalent to PAL for a specific loss! More 
generally:

c.f. recall@k optimal scorer

Classical


